skip to main content


Title: Ultrafast Coherence Delocalization in Real Space Simulated by Polaritons
Abstract

Coherence delocalization has been investigated on a coupled‐cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two‐dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transferred to another cavity) has been observed in frequency and real space. This directionality is enabled by the dissipation of delocalized photon from high‐energy to low‐energy modes, described by Lindblad dynamics. Further experiments show that when coherences are directly prepared between polaritons from different cavities, only energetically nearby polaritons can form coherences that survive the long‐range environmental fluctuation. Together with the Lindblad dynamics, this result implies that coherences delocalize through a one‐step mechanism where photons transfer from one cavity to another, shedding light to coherence evolution in natural and artificial quantum systems. This new optical platform based on molecular vibrational polariton thus demonstrates a way of combining photon and molecular modes to simulate coherence dynamics in the infrared regime.

 
more » « less
Award ID(s):
1848215
NSF-PAR ID:
10447394
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
5
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, the “particle in a box” idea, which was broadly developed in semiconductor quantum dot research, was extended into mid-infrared (IR) cavity modes by applying lateral confinement in an optical cavity. The discrete cavity modes hybridized with molecular vibrational modes, resulting in a quartet of polariton states that can support multiple coherence states in the IR regime. We applied tailored pump pulse sequences to selectively prepare these coherences and verified the multi-coherence existence. The simulation based on Lindblad equation showed that because the quartet of polariton states resided in the same cavity, they were specifically robust toward decoherence caused by fluctuations in space. The multiple robust coherences paved the way for entangled states and coherent interactions between cavity polaritons, which would be critical for advancing polariton-based quantum information technology. 
    more » « less
  2. Abstract

    Hybrid light–matter coupled states, or polaritons, in magnetic materials have attracted significant attention due to their potential for enabling novel applications in spintronics and quantum information processing. However, most magnon‐polariton studies in the strong coupling regime to date have been carried out for ferromagnetic materials with magnon excitations at gigahertz frequencies. Here, strong resonant photon–magnon coupling at frequencies above 1 terahertz is investigated for the first time in a prototypical room‐temperature antiferromagnetic insulator, NiO,  inside a Fabry–Pérot cavity. The cavity is formed by the crystal itself with a thickness adjusted to an optimal value. Terahertz time‐domain spectroscopy measurements in magnetic fields up to 25 T reveal the evolution of the magnon frequency through Fabry–Pérot cavity modes with photon–magnon anticrossing behavior, demonstrating clear vacuum Rabi splittings exceeding the polariton linewidths. These results show that NiO is a promising platform for exploring antiferromagnetic spintronics and cavity magnonics in the terahertz frequency range.

     
    more » « less
  3. null (Ed.)
    Realizing nonlinear interactions between spatially separated particles can advance molecular science and technology, including remote catalysis of chemical reactions, ultrafast processing of information in infrared (IR) photonic circuitry, and advanced platforms for quantum simulations with increased complexity. Here, we achieved nonlinear interactions at ultrafast time scale between polaritons contained in spatially adjacent cavities in the mid-IR regime, altering polaritons in one cavity by pumping polaritons in an adjacent one. This was done by strong coupling molecular vibrational modes with photon modes, a process that combines characteristics of both photon delocalization and molecular nonlinearity. The dual photon/molecule character of polaritons enables delocalized nonlinearity—a property that neither molecular nor cavity mode would have alone. 
    more » « less
  4. Abstract

    When molecular transitions strongly couple to photon modes, they form hybrid light-matter modes called polaritons. Collective vibrational strong coupling is a promising avenue for control of chemistry, but this can be deterred by the large number of quasi-degenerate dark modes. The macroscopic occupation of a single polariton mode by excitations, as observed in Bose-Einstein condensation, offers promise for overcoming this issue. Here we theoretically investigate the effect of vibrational polariton condensation on the kinetics of electron transfer processes. Compared with excitation with infrared laser sources, the vibrational polariton condensate changes the reaction yield significantly at room temperature due to additional channels with reduced activation barriers resulting from the large accumulation of energy in the lower polariton, and the many modes available for energy redistribution during the reaction. Our results offer tantalizing opportunities to use condensates for driving chemical reactions, kinetically bypassing usual constraints of fast intramolecular vibrational redistribution in condensed phase.

     
    more » « less
  5. Polariton chemistry exploits the strong interaction between quantized excitations in molecules and quantized photon states in optical cavities to affect chemical reactivity. Molecular polaritons have been experimentally realized by the coupling of electronic, vibrational, and rovibrational transitions to photon modes, which has spurred a tremendous theoretical effort to model and explain how polariton formation can influence chemistry. This tutorial review focuses on computational approaches for the electronic strong coupling problem through the combination of familiar techniques from ab initio electronic structure theory and cavity quantum electrodynamics, toward the goal of supplying predictive theories for polariton chemistry. Our aim is to emphasize the relevant theoretical details with enough clarity for newcomers to the field to follow, and to present simple and practical code examples to catalyze further development work.

     
    more » « less