The introduction of new, safe, and reliable solid‐electrolyte chemistries and technologies can potentially overcome the challenges facing their liquid counterparts while widening the breadth of possible applications. Through tech‐historic evolution and rationally analyzing the transition from liquid‐based Li‐ion batteries (LIBs) to all‐solid‐state Li‐metal batteries (ASSLBs), a roadmap for the development of a successful oxide and sulfide‐based ASSLB focusing on interfacial challenges is introduced, while accounting for five parameters: energy density, power density, longterm stability, processing, and safety. First taking a strategic approach, this review dismantles the ASSLB into its three major components and discusses the most promising solid electrolytes and their most advantageous pairing options with oxide cathode materials and the Li metal anode. A thorough analysis of the chemical, electrochemical, and mechanical properties of the two most promising and investigated classes of inorganic solid electrolytes, namely oxides and sulfides, is presented. Next, the overriding challenges associated with the pairing of the solid electrolyte with oxide‐based cathodes and a Li‐metal anode, leading to limited performance for solid‐state batteries are extensively addressed and possible strategies to mitigate these issues are presented. Finally, future perspectives, guidelines, and selective interface engineering strategies toward the resolution of these challenges are analyzed and discussed.
more » « less- NSF-PAR ID:
- 10447439
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Flexible and low-cost poly(ethylene oxide) (PEO)-based electrolytes are promising for all-solid-state Li-metal batteries because of their compatibility with a metallic lithium anode. However, the low room-temperature Li-ion conductivity of PEO solid electrolytes and severe lithium-dendrite growth limit their application in high-energy Li-metal batteries. Here we prepared a PEO/perovskite Li 3/8 Sr 7/16 Ta 3/4 Zr 1/4 O 3 composite electrolyte with a Li-ion conductivity of 5.4 × 10 −5 and 3.5 × 10 −4 S cm −1 at 25 and 45 °C, respectively; the strong interaction between the F − of TFSI − (bis-trifluoromethanesulfonimide) and the surface Ta 5+ of the perovskite improves the Li-ion transport at the PEO/perovskite interface. A symmetric Li/composite electrolyte/Li cell shows an excellent cyclability at a high current density up to 0.6 mA cm −2 . A solid electrolyte interphase layer formed in situ between the metallic lithium anode and the composite electrolyte suppresses lithium-dendrite formation and growth. All-solid-state Li|LiFePO 4 and high-voltage Li|LiNi 0.8 Mn 0.1 Co 0.1 O 2 batteries with the composite electrolyte have an impressive performance with high Coulombic efficiencies, small overpotentials, and good cycling stability.more » « less
-
Abstract Rechargeable secondary batteries, widely used in modern technology, are essential for mobile and consumer electronic devices and energy storage applications. Lithium (Li)‐ion batteries are currently the most popular choice due to their decent energy density. However, the increasing demand for higher energy density has led to the development of Li metal batteries (LMBs). Despite their potential, the commonly used liquid electrolyte‐based LMBs present serious safety concerns, such as dendrite growth and the risk of fire and explosion. To address these issues, using solid‐state electrolytes in batteries has emerged as a promising solution. In this Perspective, recent advancements are discussed in ionic covalent organic framework (ICOFs)‐based solid‐state electrolytes, identify current challenges in the field, and propose future research directions. Highly crystalline ion conductors with polymeric versatility show promise as the next‐generation solid‐state electrolytes. Specifically, the use of anionic or cationic COFs is examined for Li‐based batteries, highlight the high interfacial resistance caused by the intrinsic brittleness of crystalline ICOFs as the main limitation, and presents innovative ideas for developing all‐ and quasi‐solid‐state batteries using ICOF‐based solid‐state electrolytes. With these considerations and further developments, the potential for ICOFs is optimistic about enabling the realization of high‐energy‐density all‐solid‐state LMBs.
-
Abstract Solid‐state lithium metal batteries with garnet‐type electrolyte provide several advantages over conventional lithium‐ion batteries, especially for safety and energy density. However, a few grand challenges such as the propagation of Li dendrites, poor interfacial contact between the solid electrolyte and the electrodes, and formation of lithium carbonate during ambient exposure over the solid‐state electrolyte prevent the viability of such batteries. Herein, an ultrathin sub‐nanometer porous carbon nanomembrane (CNM) is employed on the surface of solid‐state electrolyte (SSE) that increases the adhesion of SSE with electrodes, prevents lithium carbonate formation over the surface, regulates the flow of Li‐ions, and blocks any electronic leakage. The sub‐nanometer scale pores in CNM allow rapid permeation of Li‐ions across the electrode–electrolyte interface without the presence of any liquid medium. Additionally, CNM suppresses the propagation of Li dendrites by over sevenfold up to a current density of 0.7 mA cm−2and enables the cycling of all‐solid‐state batteries at low stack pressure of 2 MPa using LiFePO4cathode and Li metal anode. The CNM provides chemical stability to the solid electrolyte for over 4 weeks of ambient exposure with less than a 4% increase in surface impurities.
-
Abstract Spinel‐type LiNi0.5Mn1.5O4(LNMO) is one of the most promising 5 V‐class cathode materials for Li‐ion batteries that can achieve high energy density and low production costs. However, in liquid electrolyte cells, the high voltage causes continuous cell degradation through the oxidative decomposition of carbonate‐based liquid electrolytes. In contrast, some solid‐state electrolytes have a wide electrochemical stability range and can withstand the required oxidative potential. In this work, a thin‐film battery consisting of an LNMO cathode with a solid lithium phosphorus oxynitride (LiPON) electrolyte is tested and their interface before and after cycling is characterized. With Li metal as the anode, this system can deliver stable performance for 600 cycles with an average Coulombic efficiency >99%. Neutron depth profiling indicates a slight overlithiated layer at the interface prior to cycling, a result that is consistent with the excess charge capacity measured during the first cycle. Cryogenic electron microscopy further reveals intimate contact between LNMO and LiPON without noticeable structure and chemical composition evolution after extended cycling, demonstrating the superior stability of LiPON against a high voltage cathode. Consequently, design guidelines are proposed for interface engineering that can accelerate the commercialization of a high voltage cell with solid or liquid electrolytes.
-
Abstract Solid‐state lithium (Li) metal batteries (LMBs) have been developed as a promising replacement for conventional Li‐ion batteries due to their potential for higher energy. However, the current solid‐state electrolytes used in LMBs have limitations regarding mechanical and electrochemical properties and interfacial stability. Here, a fluorine (F)‐containing solid polymer electrolyte (SPE) having a bi‐continuous structure of F‐containing elastomers and plastic crystals is reported. The trifluoroethyl acrylate‐based SPE (T‐SPE) exhibits high ionic conductivity over 10−3 S cm−1, superior mechanical elasticity, and robust LiF‐rich interphases at both the Li metal anode and the LiNi0.83Mn0.06Co0.11O2cathode. Full cells with thin T‐SPEs and low negative/positive capacity ratios below 0.5 at the high‐operating voltage of 4.5 V demonstrate a high specific energy of 538 Wh kganode+cathode+electrolyte−1and maintain 393 Wh kg−1at a high specific power of 804 W kganode+cathode+electrolyte−1. The F‐containing phase‐separated SPE system provides a powerful strategy for achieving high‐energy and ‐power solid‐state LMBs.