skip to main content


Title: Intraspecific trait variation across elevation predicts a widespread tree species' climate niche and range limits
Abstract

Global change is widely altering environmental conditions which makes accurately predicting species range limits across natural landscapes critical for conservation and management decisions. If climate pressures along elevation gradients influence the distribution of phenotypic and genetic variation of plant functional traits, then such trait variation may be informative of the selective mechanisms and adaptations that help define climatic niche limits. Using extensive field surveys along 16 elevation transects and a large common garden experiment, we tested whether functional trait variation could predict the climatic niche of a widespread tree species (Populus angustifolia) with a double quantile regression approach. We show that intraspecific variation in plant size, growth, and leaf morphology corresponds with the species' total climate range and certain climatic limits related to temperature and moisture extremes. Moreover, we find evidence of genetic clines and phenotypic plasticity at environmental boundaries, which we use to create geographic predictions of trait variation and maximum values due to climatic constraints across the western US. Overall, our findings show the utility of double quantile regressions for connecting species distributions and climate gradients through trait‐based mechanisms. We highlight how new approaches like ours that incorporate genetic variation in functional traits and their response to climate gradients will lead to a better understanding of plant distributions as well as identifying populations anticipated to be maladapted to future environments.

 
more » « less
NSF-PAR ID:
10447471
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
9
ISSN:
2045-7758
Page Range / eLocation ID:
p. 3856-3867
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ahmed, Ferdous (Ed.)
    We addressed the hypothesis that intraspecific genetic variation in plant traits from different sites along a distance/elevation gradient would influence the communities they support when grown at a new site. Answers to this hypothesis are important when considering the community consequences of assisted migration under climate change; i.e., if you build it will they come?. We surveyed arthropod communities occurring on the foundation riparian tree species Populus angustifolia along a distance/elevation gradient and in a common garden where trees from along the gradient were planted 20–22 years earlier. Three major patterns were found: 1) In the wild, arthropod community composition changed significantly. Trees at the lower elevation site supported up to 58% greater arthropod abundance and 26% greater species richness than more distant, high elevation trees. 2) Trees grown in a common garden sourced from the same locations along the gradient, supported arthropod communities more similar to their corresponding wild trees, but the similarity declined with transfer distance and elevation. 3) Of five functional traits examined, leaf area, a trait under genetic control that decreases at higher elevations, is correlated with differences in arthropod species richness and abundance. Our results suggest that genetic differences in functional traits are stronger drivers of arthropod community composition than phenotypic plasticity of plant traits due to environmental factors. We also show that variation in leaf area is maintained and has similar effects at the community level while controlling for environment. These results demonstrate how genetically based traits vary across natural gradients and have community-level effects that are maintained, in part, when they are used in assisted migration. Furthermore, optimal transfer distances for plants suffering from climate change may not be the same as optimal transfer distances for their dependent communities. 
    more » « less
  2. Abstract

    Selection pressures along climate gradients give rise to predictable variation in plant functional traits of individual species suggestive of local adaptation. Species whose ranges include winter rainfall, Mediterranean climates, or other strongly seasonal climates, may be exposed to divergent selection pressures at different ends of seasonality gradients.

    Here, we evaluate how rainfall seasonality in conjunction with other key climatic variables impacts patterns of trait variation inPelargonium scabrum, a woody shrub from the Greater Cape Floristic Region of South Africa. This biodiversity hotspot encompasses a Mediterranean climate (wet winters and hot, dry summers) and displays steep gradients in temperature and water availability.

    We used Bayesian regression models to evaluate leaf trait–trait and trait–climate relationships among 26 populations. Models included rainfall seasonality and its interaction with other climate variables (mean annual temperature, mean annual precipitation and potential evapotranspiration) as predictors to test for the impact of climate variation on three leaf traits: size, dissection and leaf mass per area (LMA). We evaluated model explanatory power by calculating BayesianR2values, and predictive power via leave‐one‐out cross‐validation.

    Trait–trait associations were modulated by rainfall seasonality, including a reversal in the relationship between leaf size and dissection depending on the proportion of rain received in winter. Trait–climate models were improved by including rainfall seasonality as a predictor for both explanatory and predictive power. For leaf dissection and LMA, we detected significant interactions between rainfall seasonality and other environmental variables, leading to reversals in the relationships between these traits and the three environmental variables depending on the proportion of winter rainfall.

    Differences in the timing of rainfall, coupled with strong differences in the covariation of climate variables, impose divergent selection pressures onP. scabrumpopulations resulting in divergence of trait values, trait integration and responses to climate gradients. These patterns are consistent with local adaptation ofP. scabrumpopulations mediated by the interactions between temperature and the amount and timing of rainfall. Species arrayed along broad climate gradients represent an excellent opportunity for investigating patterns of trait variation and abundances and distributions of species in relation to future changes in climate.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  3. Abstract

    Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also comparedLMAvariance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weightedLMAincreased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation inLMAwas species turnover. Variation inLMAat the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation inLMAindicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.

     
    more » « less
  4. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less
  5. Abstract

    The central‐marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter‐population genetic differentiation compared to range cores. CMH predictions are based on long‐held “abundant‐centre” assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying “abundant‐centre” assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to “abundant‐centre” assumptions and, in contrast to theory, range marginA. germinansexhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.

     
    more » « less