skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Importin α/β promote Kif18B microtubule association and enhance microtubule destabilization activity
Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/β as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/β interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/β increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/β have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/β spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal–containing spindle assembly factors.  more » « less
Award ID(s):
1927504
PAR ID:
10447562
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Wignall, Sarah
Date Published:
Journal Name:
Molecular Biology of the Cell
Volume:
34
Issue:
4
ISSN:
1059-1524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tight regulation of microtubule (MT) dynamics is necessary for proper spindle assembly and chromosome segregation. The MT destabilizing Kinesin-8, Kif18B, controls astral MT dynamics and spindle positioning. Kif18B interacts with importin α/β as well as with the plus-tip tracking protein EB1, but how these associations modulate Kif18B is not known. We mapped the key binding sites on Kif18B, made residue-specific mutations, and assessed their impact on Kif18B function. Blocking EB1 interaction disrupted Kif18B MT plus-end accumulation and inhibited its ability to control MT length on monopolar spindles in cells. Blocking importin α/β interaction disrupted Kif18B localization without affecting aster size. In vitro, importin α/β increased Kif18B MT association by increasing the on-rate and decreasing the off-rate from MTs, which stimulated MT destabilization. In contrast, EB1 promoted MT destabilization without increasing lattice binding in vitro, which suggests that EB1 and importin α/β have distinct roles in the regulation of Kif18B-mediated MT destabilization. We propose that importin α/β spatially modulate Kif18B association with MTs to facilitate its MT destabilization activity. Our results suggest that Ran regulation is important not only to control molecular motor function near chromatin but also to provide a spatial control mechanism to modulate MT binding of nuclear localization signal-containing spindle assembly factors. 
    more » « less
  2. To understand how chromosomes are segregated, it is necessary to explain the precise spatiotemporal organization of microtubules (MTs) in the mitotic spindle. We use Xenopus egg extracts to study the nucleation and dynamics of MTs in branched networks, a process that is critical for spindle assembly. Surprisingly, new branched MTs preferentially originate near the minus-ends of pre-existing MTs. A sequential reaction model, consisting of deposition of nucleation sites on an existing MT, followed by rate-limiting nucleation of branches, reproduces the measured spatial profile of nucleation, the distribution of MT plus-ends and tubulin intensity. By regulating the availability of the branching effectors TPX2, augmin and γ-TuRC, combined with single-molecule observations, we show that first TPX2 is deposited on pre-existing MTs, followed by binding of augmin/γ-TuRC to result in the nucleation of branched MTs. In sum, regulating the localization and kinetics of nucleation effectors governs the architecture of branched MT networks. 
    more » « less
  3. Kinesin-5 motors play an essential role during mitotic spindle assembly in many organisms: they crosslink antiparallel spindle microtubules, step toward plus ends, and slide the microtubules apart. This activity separates the spindle poles and chromosomes. Kinesin-5s are not only plus-end-directed, but can walk or be carried toward MT minus ends where they show enhanced localization. The kinesin-5 C-terminal tail interacts with and regulates the motor, affecting structure, motility, and sliding force of purified kinesin-535–37 along with motility and spindle assembly in cells. The tail contains phosphorylation sites, particularly in the conserved BimC box. Nine mitotic phosphorylation sites were identified in the kinesin-5 motor of the fission yeast Schizosaccharomyces pombe, suggesting that multi-site phosphorylation may regulate kinesin-5s. Here, we show that mutating all nine sites to either alanine or glutamate causes temperature-sensitive lethality due to a failure of bipolar spindle assembly. We characterize kinesin-5 localization and sliding force in the spindle, based on Cut7-dependent microtubule minus-end protrusions in cells lacking kinesin-14 motors. Imaging and computational modeling show that Cut7p simultaneously moves toward minus ends of protrusion MTs and plus ends of spindle midzone MTs. Phosphorylation mutants show dramatic decreases in protrusions and sliding force. Comparison to a model of force to create protrusions suggests that tail truncation and phosphorylation mutants decrease Cut7p sliding force similarly to tail-truncated human Eg5. Our results show that C-terminal tail phosphorylation is required for kinesin-5/Cut7 sliding force and bipolar spindle assembly in fission yeast. 
    more » « less
  4. Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana , the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo . The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles. 
    more » « less
  5. Walczak, Claire (Ed.)
    Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis (STADIA) that identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared with previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins. 
    more » « less