skip to main content


Title: Adjustment of self‐formed bankfull channel geometry of meandering rivers: modelling study
ABSTRACT

We consider the evolution of the hydraulic geometry of sand‐bed meandering rivers. We study the difference between the timescale of longitudinal river profile adjustment and that of channel width and depth adjustment. We also study the effect of hydrological regime alteration on the evolution of bankfull channel geometry. To achieve this, a previously developed model for the spatiotemporal co‐evolution of bankfull channel characteristics, including bankfull discharge, bankfull width, bankfull depth and down‐channel bed slope, is used. In our modelling framework, flow variability is considered in terms of a specified flow duration curve. Taking advantage of this unique feature, we identify the flow range responsible for long‐term bankfull channel change within the specified flow duration curve. That is, the relative importance of extremely high short‐duration flows compared to moderately high longer duration flows is examined. The Minnesota River, MN, USA, an actively meandering sand‐bed stream, is selected for a case study. The longitudinal profile of the study reach has been in adjustment toward equilibrium since the end of the last glaciation, while its bankfull cross‐section is rapidly widening due to hydrological regime change in the last several decades. We use the model to demonstrate that the timescale for longitudinal channel profile adjustment is much greater than the timescale for cross‐sectional profile adjustment due to a lateral channel shift. We also show that hydrological regime shift is responsible for the recent rapid widening of the Minnesota River. Our analysis suggests that increases in the 5–25% exceedance flows play a more significant role in recent bankfull channel enlargement of the Minnesota River than increase in either the 0.1% exceedance flow or the 90% exceedance flow. © 2020 John Wiley & Sons, Ltd.

 
more » « less
NSF-PAR ID:
10447740
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
45
Issue:
13
ISSN:
0197-9337
Page Range / eLocation ID:
p. 3313-3322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a simple modeling framework for the codetermination of bankfull discharge and corresponding bankfull channel geometry (width, depth, and longitudinal channel slope) of an alluvial meandering river. We specifically consider a sand‐bed river whose floodplain is capped by a mud‐rich layer. We inquire as to how the wide spectrum of flows to which the river is subjected leads to the establishment of specific values for bankfull discharge and associated bankfull geometry. Here we provide a physically based predictor of bankfull discharge that goes beyond the simple assumption of the 1.5‐year flood discharge. We do this using physics‐based submodels for channel and floodplain processes. We show that bankfull discharge and bankfull geometry are established as a result of (i) floodplain vertical accretion due to overbank deposition, (ii) migration of the inner bank and outer cut bank, (iii) net removal of floodplain sediment and reduction in average floodplain height due to lateral channel shift, and (iv) in‐channel downstream bed material transport. The flow duration curve is employed to quantify the effect of these processes, as well as to account for flow variability. Our model captures the spatiotemporal evolution of bankfull discharge, depth, width, and down‐channel slope toward equilibrium for specified flow duration curve and watershed characteristics. Our new framework can be used for assessing long‐term river response to change in sediment supply or flow duration curve. A model implementation is presented for the case of the Trinity River, TX, USA, to demonstrate the use of the model and its behavior.

     
    more » « less
  2. Abstract

    Sediment transport and channel morphology in mountainous hillslope‐coupled streams reflect a mixture of hillslope and channel processes. However, the influence of lithology on channel form and adjustment and sediment transport remains poorly understood. Patterns of channel form, grain size, and transport capacity were investigated in two gravel‐bed streams with contrasting lithology (basalt and sandstone) in the Oregon Coast Range, USA, in a region in which widespread landslides and debris flows occurred in 1996. This information was used to evaluate threshold channel conditions and channel bed adjustment since 1996. Channel geometry, slope, and valley width were measured or extracted from LiDAR and sediment textures were measured in the surface and subsurface. Similar coarsening patterns in the first few kilometres of both streams indicated strong hillslope influences, but subsequent downstream fining was lithology‐dependent. Despite these differences, surface grain size was strongly related to shear stress, such that the ratio of available to critical shear stress for motion of the median surface grain size at bankfull stage was around one over most of the surveyed lengths. This indicated hydraulic sorting of supplied sediment, independent of lithology. We infer a cycle of adjustment to sediment delivered during the 1996 flooding, from threshold conditions, to non‐alluvial characteristics, to threshold conditions in both basins. The sandstone basin can also experience complete depletion of the gravel‐size alluvium to sand size, leading to bedrock exposure because of high diminution rates. Although debris flows being more frequent in a basalt basin, this system will likely display threshold‐like characteristics over a longer period, indicating that the lithologic control on channel adjustment is driven by differences in rock competence that control grain size and available gravel for bed load transport. © 2020 John Wiley & Sons, Ltd.

     
    more » « less
  3. Abstract

    Accurately measuring river meander migration over time is critical for sediment budgets and understanding how rivers respond to changes in hydrology or sediment supply. However, estimates of meander migration rates or streambank contributions to sediment budgets using repeat aerial imagery, maps, or topographic data will be underestimated without proper accounting for channel reversal. Furthermore, comparing channel planform adjustment measured over dissimilar timescales are biased because short‐ and long‐term measurements are disproportionately affected by temporary rate variability, long‐term hiatuses, and channel reversals. We evaluate the role of timescale dependence for the Root River, a single threaded meandering sand‐ and gravel‐bedded river in southeastern Minnesota, USA, with 76 years of aerial photographs spanning an era of landscape changes that have drastically altered flows. Empirical data and results from a statistical river migration model both confirm a temporal measurement‐scale dependence, illustrated by systematic underestimations (2–15% at 50 years) and convergence of migration rates measured over sufficiently long timescales (> 40 years). Frequency of channel reversals exerts primary control on measurement bias for longer time intervals by erasing the record of observable migration. We conclude that using long‐term measurements of channel migration for sediment remobilization projections, streambank contributions to sediment budgets, sediment flux estimates, and perceptions of fluvial change will necessarily underestimate such calculations. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  4. Abstract

    Mutual adjustment between process and form shapes the morphology of alluvial river channels, including channel banks. The tops of banks define the transition between the channel and adjacent floodplain, which corresponds to the level of incipient flooding. Despite the geomorphological and hydrological importance of this transition, few, if any, studies have extensively examined spatial variability in bank elevations and its influence on bankfull stage. This study uses an objective method to explore this variability at two spatial resolutions along three alluvial lowland meandering rivers. Results show that variability in bankfull stage is inherent to all three rivers. The mean variability of bankfull stage about the average downstream gradient in this stage is 10% to 20% of mean bankfull depth. Elevations of channel banks exhibit similar variability, even after accounting for systematic variations in heights of inner and outer banks associated with river meandering. Two‐dimensional hydraulic simulations show that the elevation range of mean variability in bankfull stage overlaps considerably with the elevation range of high curvature on rating curves, confirming that variability in bankfull stage influences the shape of these curves. The simulations verify that breaks in channel banks allow flow to extend onto the floodplain at stages below the average bankfull stage. The findings provide fundamental insight into the variable nature of bankfull conditions along meandering rivers and the role of this variability in channel‐floodplain connectivity. The results also inform river‐restoration efforts that seek to re‐establish the natural configuration of channel banks.

     
    more » « less
  5. Abstract

    Meandering river floodplains often contain intermittently flooded complex channel networks. Many questions remain as to the pervasiveness, function, and evolution of these floodplain channels. In this present work, we analyzed size‐specific sediment transport potential and assessed whether the channelized floodplain of the meandering East Fork White River near Seymour, Indiana is on a net erosional or depositional trajectory. We applied a two‐dimensional hydrodynamic model and used simulated model results to estimate the largest sediment size that can be moved in suspension and as bedload at various flows for grain size classes between 4 µm and 64 mm. We developed a probabilistic method that integrates the largest sediment size that can be moved at various flows to compute an effective grain size, which we compared to measured field data. Results show that the river is capable of supplying sand to the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. This suggests that sediment supplied from the river could be transported as bedload in floodplain channels. These floodplain channels are supply limited under the current hydrologic regime and the grain size distribution of the bed surface is set by the flow conditions; thus, these floodplain channels are net erosional. Finally, our proposed method of probabilistically integrating the largest sediment size that can be moved at various flows can be used to predict the upper end of the grain size distribution in suspension and in bed material, which is applicable to floodplains as well as coastal areas.

     
    more » « less