Diffusion-weighted magnetic resonance imaging (dMRI) allows for non-invasive, detailed examination of the white matter structures of the brain. White matter tract-specific measures based on either the diffusion tensor model (e.g. FA, ADC, and MD) or tractography (e.g. volume, streamline count or density) are often compared between groups of subjects to localize differences within the white matter. Less commonly examined is the shape of the individual white matter tracts. In this paper, we propose to use the Laplace-Beltrami (LB) spectrum as a descriptor of the shape of white matter tracts. We provide an open, automated pipeline for the computation of the LB spectrum on segmented white matter tracts and demonstrate its efficacy through machine learning classification experiments. We show that the LB spectrum allows for distinguishing subjects diagnosed with bipolar disorder from age and sex-matched healthy controls, with classification accuracy reaching 95%. We further demonstrate that the results cannot be explained by traditional measures, such as tract volume, streamline count or mean and total length. The results indicate that there is valuable information in the anatomical shape of the human white matter tracts. 
                        more » 
                        « less   
                    
                            
                            Reduced White Matter Integrity and Deficits in Neuropsychological Functioning in Adults With Autism Spectrum Disorder
                        
                    
    
            Autism spectrum disorder (ASD) is currently viewed as a disorder of cortical systems connectivity, with a heavy emphasis being on the structural integrity of white matter tracts. However, the majority of the literature to date has focused on children with ASD. Understanding the integrity of white matter tracts in adults may help reveal the nature of ASD pathology in adulthood and the potential contributors to cognitive impairment. This study examined white matter water diffusion using diffusion tensor imaging in relation to neuropsychological measures of cognition in a sample of 45 adults with ASD compared to 20 age, gender, and full‐scale‐IQ‐matched healthy volunteers. Tract‐based spatial statistics were used to assess differences in diffusion along white matter tracts between groups using permutation testing. The following neuropsychological measures of cognition were assessed: processing speed, attention vigilance, working memory, verbal learning, visual learning, reasoning and problem solving, and social cognition. Results indicated that fractional anisotropy (FA) was significantly reduced in adults with ASD in the anterior thalamic radiation (P= 0.022) and the right cingulum (P= 0.008). All neuropsychological measures were worse in the ASD group, but none of the measures significantly correlated with reduced FA in either tract in the adults with ASD or in the healthy volunteers. Together, this indicates that the tracts that are the most impacted in autism may not be (at least directly) responsible for the behavioral deficits in ASD.Autism Res2020, 13: 702–714. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryWhite matter tracts are the data cables in the brain that efficiently transfer information, and damage to these tracts could be the cause for the abnormal behaviors that are associated with autism. We found that two long‐range tracts (the anterior thalamic radiation and the cingulum) were both impaired in autism but were not directly related to the impairments in behavior. This suggests that the abnormal tracts and behavior are the effects of another underlying mechanism. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1632849
- PAR ID:
- 10447742
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Autism Research
- Volume:
- 13
- Issue:
- 5
- ISSN:
- 1939-3792
- Page Range / eLocation ID:
- p. 702-714
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background—Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. Objective/Hypothesis—We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. Methods—We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. Results—Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r=−0.68, p=0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r=−0.54, p=0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients.more » « less
- 
            The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo . We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function. SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.more » « less
- 
            Autism spectrum disorder is increasingly understood to be based on atypical signal transfer among multiple interconnected networks in the brain. Relative temporal patterns of neural activity have been shown to underlie both the altered neurophysiology and the altered behaviors in a variety of neurogenic disorders. We assessed brain network dynamics variability in autism spectrum disorders (ASD) using measures of synchronization (phase‐locking) strength, and timing of synchronization and desynchronization of neural activity (desynchronization ratio) across frequency bands of resting‐state electroencephalography (EEG). Our analysis indicated that frontoparietal synchronization is higher in ASD but with more short periods of desynchronization. It also indicates that the relationship between the properties of neural synchronization and behavior is different in ASD and typically developing populations. Recent theoretical studies suggest that neural networks with a high desynchronization ratio have increased sensitivity to inputs. Our results point to the potential significance of this phenomenon to the autistic brain. This sensitivity may disrupt the production of an appropriate neural and behavioral responses to external stimuli. Cognitive processes dependent on the integration of activity from multiple networks maybe, as a result, particularly vulnerable to disruption.Autism Res2020, 13: 24–31. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. Lay SummaryParts of the brain can work together by synchronizing the activity of the neurons. We recorded the electrical activity of the brain in adolescents with autism spectrum disorder and then compared the recording to that of their peers without the diagnosis. We found that in participants with autism, there were a lot of very short time periods of non‐synchronized activity between frontal and parietal parts of the brain. Mathematical models show that the brain system with this kind of activity is very sensitive to external events.more » « less
- 
            BackgroundReliable and specific biomarkers that can distinguish autism spectrum disorders (ASDs) from commonly co-occurring attention-deficit/hyperactivity disorder (ADHD) are lacking, causing misses and delays in diagnosis, and reducing access to interventions and quality of life. AimsTo examine whether an innovative, brief (1-min), videogame method called Computerised Assessment of Motor Imitation (CAMI), can identify ASD-specific imitation differences compared with neurotypical children and children with ADHD. MethodThis cross-sectional study used CAMI alongside standardised parent-report (Social Responsiveness Scale, Second Edition) and observational measures of autism (Autism Diagnostic Observation Schedule-Second Edition; ADOS-2), ADHD (Conners) and motor ability (Physical and Neurological Examination for Soft Signs). The sample comprised 183 children aged 7–13 years, with ADHD (without ASD), with ASD (with and without ADHD) and who were neurotypical. ResultsRegardless of co-occurring ADHD, children with ASD showed poorer CAMI performance than neurotypical children (P< 0.0001; adjustedR2= 0.28), whereas children with ADHD and neurotypical children showed similar CAMI performance. Receiver operating curve and support vector machine analyses showed that CAMI distinguishes ASD from both neurotypical children (80% true positive rate) and children with ADHD (70% true positive rate), with a high success rate significantly above chance. Among children with ASD, poor CAMI performance was associated with increased autism traits, particularly ADOS-2 measures of social affect and restricted and repetitive behaviours (adjustedR2= 0.23), but not with ADHD traits or motor ability. ConclusionsFour levels of analyses confirm that poor imitation measured by the low-cost and scalable CAMI method specifically distinguishes ASD not only from neurotypical development, but also from commonly co-occurring ADHD.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
