skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Confirmation of Color-dependent Centroid Shift Measured After 1.8 Years with HST
Abstract We measured the precise masses of the host and planet in the OGLE-2003-BLG-235 system, when the lens and source were resolving, with 2018 Keck high resolution images. This measurement is in agreement with the observation taken in 2005 with the Hubble Space Telescope (HST). In the 2005 data, the lens and sources were not resolved and the measurement was made using color-dependent centroid shift only. The Nancy Grace Roman Space Telescope will measure masses using data typically taken within 3–4 yr of the peak of the event, which is a much shorter baseline when compared to most of the mass measurements to date. Hence, the color-dependent centroid shift will be one of the primary methods of mass measurements for the Roman telescope. Yet, mass measurements of only two events (OGLE-2003-BLG-235 and OGLE-2005-BLG-071) have been done using the color-dependent centroid shift method so far. The accuracy of the measurements using this method are neither completely known nor well studied. The agreement of the Keck and HST results, as shown in this paper, is very important because this agreement confirms the accuracy of the mass measurements determined at a small lens-source separation using the color-dependent centroid shift method. It also shows that with >100 high resolution images, the Roman telescope will be able to use color-dependent centroid shift at a 3–4 yr time baseline and produce mass measurements. We find that OGLE-2003-BLG-235 is a planetary system that consists of a 2.34 ± 0.43 M Jup planet orbiting a 0.56 ± 0.06 M ⊙ K-dwarf host star at a distance of 5.26 ± 0.71 kpc from the Sun.  more » « less
Award ID(s):
2108185
PAR ID:
10447777
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
5
ISSN:
0004-6256
Page Range / eLocation ID:
206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract KMT-2018-BLG-0029Lb and OGLE-2019-BLG-0960Lb were the lowest mass-ratio microlensing planets at the time of discovery. For both events, microlensing parallax measurements from the Spitzer Space Telescope implied lens systems that were more distant and massive than those inferred from the ground-based parallax. Here, we report on the detection of excess flux aligned to the event locations using Keck Adaptive Optics imaging, which is consistent with the expected brightness of main-sequence hosts under the ground-based parallax, but inconsistent with that predicted by Spitzer. Based on the excess flux, ground-based parallax, and angular Einstein radius, we determine KMT-2018-BLG-0029Lb to be a 4.2 ± 0.5Mplanet orbiting a 0.70 ± 0.07Mhost at a projected separation of 3.1 ± 0.3 au, and OGLE-2019-BLG-0960Lb to be a 2.0 ± 0.2Mplanet orbiting a 0.40 ± 0.03Mhost at a projected separation of 1.7 ± 0.1 au. We report on additional light-curve models for KMT-2018-BLG-0029 under the generalized inner-outer (offset) degeneracy, which were not reported in the original analysis. We point out inconsistencies in the inner/outer labeling of the degenerate models in the lens and source planes, and advocate for the lens-plane convention, which refers to the planet being closer or further to the host star compared to the image it perturbs. Lastly, we discuss the possibility of breaking this degeneracy via ground concurrent observations with the Roman Space Telescope. 
    more » « less
  2. Abstract There are expected to be ∼108isolated black holes (BHs) in the Milky Way. OGLE-2011-BLG-0462/MOA-2011-BLG-191 (OB110462) is the only such BH with a mass measurement to date. However, its mass is disputed: Lam et al. measured a lower mass of 1.6–4.4M, while Sahu et al. and Mróz et al. measured a higher mass of 5.8–8.7M. We reanalyze OB110462, including new data from the Hubble Space Telescope (HST) and rereduced Optical Gravitational Lensing Experiment (OGLE) photometry. We also rereduce and reanalyze the HST data set with newly available software. We find significantly different (∼1 mas) HST astrometry than Lam et al. in the unmagnified epochs due to the amount of positional bias induced by a bright star ∼0.″4 from OB110462. After modeling the updated photometric and astrometric data sets, we find the lens of OB110462 is a 6.0 1.0 + 1.2 M BH. Future observations with the Nancy Grace Roman Space Telescope, which will have an astrometric precision comparable or better to HST but a field of view 100× larger, will be able to measure hundreds of isolated BH masses via microlensing. This will enable the measurement of the BH mass distribution and improve understanding of massive stellar evolution and BH formation channels. 
    more » « less
  3. Abstract We present Keck/NIRC2 adaptive optics imaging of planetary microlensing event MOA-2007-BLG-400 that resolves the lens star system from the source. We find that the MOA-2007-BLG-400L planetary system consists of a 1.71 ± 0.27 M Jup planet orbiting a 0.69 ± 0.04 M ⊙ K-dwarf host star at a distance of 6.89 ± 0.77 kpc from the Sun. So, this planetary system probably resides in the Galactic bulge. The planet–host star projected separation is only weakly constrained due to the close-wide light-curve degeneracy; the 2 σ projected separation ranges are 0.6–1.0 au and 4.7–7.7 au for close and wide solutions, respectively. This host mass is at the top end of the range of masses predicted by a standard Bayesian analysis. Our Keck follow-up program has now measured lens-source separations for six planetary microlensing events, and five of these six events have host star masses above the median prediction under the assumption that assumes that all stars have an equal chance of hosting planets detectable by microlensing. This suggests that more massive stars may be more likely to host planets of a fixed mass ratio that orbit near or beyond the snow line. These results also indicate the importance of host star mass measurements for exoplanets found by microlensing. The microlensing survey imaging data from NASA’s Nancy Grace Roman Space Telescope (formerly WFIRST) mission will be doing mass measurements like this for a huge number of planetary events. 
    more » « less
  4. Aims. With the aim of interpreting anomalous lensing events with no suggested models, we conducted a project of reinvestigating microlensing data collected in and before the 2019 season. In this work, we report a multi-planet system, OGLE-2019-BLG-0468L, that was found as a result of this project. Methods. The light curve of the lensing event OGLE-2019-BLG-0468, which consists of three distinctive anomaly features, could not be explained by the usual binary-lens or binary-source interpretations. We find a solution that explains all anomaly features with a triple-lens interpretation, in which the lens is composed of two planets and their host, making the lens the fourth multi-planet system securely found by microlensing. Results. The two planets have masses of ~3.4  M J and ~10.2  M J , and they are orbiting around a G-type star with a mass of ~0.9  M ⊙ and a distance of ~4.4 kpc. The host of the planets is most likely responsible for the light of the baseline object, although the possibility of the host being a companion to the baseline object cannot be ruled out. 
    more » « less
  5. Aims. With the aim of finding microlensing binaries containing brown dwarf (BD) companions, we investigate the microlensing survey data collected during the 2016–2018 seasons. Methods. For this purpose, we first modeled lensing events with light curves exhibiting anomaly features that are likely to be produced by binary lenses. We then sorted out BD companion binary-lens events by applying the criterion that the companion-to-primary mass ratio is q  ≲ 0.1. With this procedure, we identify six binaries with candidate BD companions: OGLE-2016-BLG-0890L, MOA-2017-BLG-477L, OGLE-2017-BLG-0614L, KMT-2018-BLG-0357L, OGLE-2018-BLG-1489L, and OGLE-2018-BLG-0360L. Results. We estimated the masses of the binary companions by conducting Bayesian analyses using the observables of the individual lensing events. According to the Bayesian estimation of the lens masses, the probabilities for the lens companions of the events OGLE-2016-BLG-0890, OGLE-2017-BLG-0614, OGLE-2018-BLG-1489, and OGLE-2018-BLG-0360 to be in the BD mass regime are very high with P BD  > 80%. For MOA-2017-BLG-477 and KMT-2018-BLG-0357, the probabilities are relatively low with P BD  = 61% and 69%, respectively. 
    more » « less