- NSF-PAR ID:
- 10447860
- Date Published:
- Journal Name:
- ISPRS International Journal of Geo-Information
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2220-9964
- Page Range / eLocation ID:
- 277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
An increasing number of location-based service providers are taking the advantage of cloud computing by outsourcing their Point of Interest (POI) datasets and query services to third-party cloud service providers (CSPs), which answer various location-based queries from users on their behalf. A critical security challenge is to ensure the integrity and completeness of any query result returned by CSPs. As an important type of queries, a location-based skyline query (LBSQ) asks for the POIs not dominated by any other POI with respect to a given query position, i.e., no POI is both closer to the query position and more preferable with respect to a given numeric attribute. While there have been several recent attempts on authenticating outsourced LBSQ, none of them support the shortest path distance that is preferable to the Euclidian distance in metropolitan areas. In this paper, we tackle this open challenge by introducing AuthSkySP, a novel scheme for authenticating outsourced LBSQ under the shortest path distance, which allows the user to verify the integrity and completeness of any LBSQ result returned by an untrusted CSP. We confirm the effectiveness and efficiency of our proposed solution via detailed experimental studies using both real and synthetic datasets.more » « less
-
This research studies graph-based approaches for Answer Sentence Selection (AS2), an essential component for retrieval-based Question Answering (QA) systems. During offline learning, our model constructs a small-scale relevant training graph per question in an unsupervised manner, and integrates with Graph Neural Networks. Graph nodes are question sentence to answer sentence pairs. We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs, and use thresholding on relevance scores for creating graph edges. Online inference is then performed to solve the AS2 task on unseen queries. Experiments on two well-known academic benchmarks and a real-world dataset show that our approach consistently outperforms SOTA QA baseline models.more » « less
-
Shortest-path computation on graphs is one of the most well-studied problems in algorithmic theory. An aspect that has only recently attracted attention is the use of databases in combination with graph algorithms, so-called distance oracles, to compute shortest-path queries on large graphs. To this purpose, we propose a novel, efficient, pure-SQL framework for answering exact distance queries on large-scale graphs, implemented entirely on an open-source database engine. Our COLD framework (COmpressed Labels on the Database) may answer multiple distance queries (vertex-to-vertex, one-to-many, k-Nearest Neighbors, Reverse k-Nearest Neighbors, Reverse k-Farthest Neighbors and Top-k Range) not handled by previous methods, rendering it a complete database solution for a variety of practical large-scale graph applications. Our experimentation shows that COLD outperforms existing approaches (including popular graph databases) in terms of query time and efficiency, while requiring significantly less storage space than these methods.more » « less
-
null (Ed.)Location-Based Services are often used to find proximal Points of Interest PoI - e.g., nearby restaurants and museums, police stations, hospitals, etc. - in a plethora of applications. An important recently addressed variant of the problem not only considers the distance/proximity aspect, but also desires semantically diverse locations in the answer-set. For instance, rather than picking several close-by attractions with similar features - e.g., restaurants with similar menus; museums with similar art exhibitions - a tourist may be more interested in a result set that could potentially provide more diverse types of experiences, for as long as they are within an acceptable distance from a given (current) location. Towards that goal, in this work we propose a novel approach to efficiently retrieve a path that will maximize the semantic diversity of the visited PoIs that are within distance limits along a given road network. We introduce a novel indexing structure - the Diversity Aggregated R-tree, based on which we devise efficient algorithms to generate the answer-set - i.e., the recommended locations among a set of given PoIs - relying on a greedy search strategy. Our experimental evaluations conducted on real datasets demonstrate the benefits of proposed methodology over the baseline alternative approaches.more » « less
-
Skyline path queries (SPQs) extend skyline queries to multi-dimensional networks, such as multi-cost road networks (MCRNs). Such queries return a set of non-dominated paths between two given network nodes. Despite the existence of extensive works on evaluating different SPQ variants, SPQ evaluation is still very inefficient due to the nonexistence of efficient index structures to support such queries. Existing index building approaches for supporting shortest-path query execution, when directly extended to support SPQs, use an unreasonable amount of space and time to build, making them impractical for processing large graphs. In this paper, we propose a novel index structure,
backbone index , and a corresponding index construction method that condenses an initial MCRN to multiple smaller summarized graphs with different granularity. We present efficient approaches to find approximate solutions to SPQs by utilizing the backbone index structure. Furthermore, considering making good use of historical query and query results, we propose two models,S kylineP athG raphN euralN etwork (SP-GNN) andT ransfer SP-GNN (TSP-GNN), to support effective SPQ processing. Our extensive experiments on real-world large road networks show that the backbone index can support finding meaningful approximate SPQ solutions efficiently. The backbone index can be constructed in a reasonable time, which dramatically outperforms the construction of other types of indexes for road networks. As far as we know, this is the first compact index structure that can support efficient approximate SPQ evaluation on large MCRNs. The results on the SP-GNN and TSP-GNN models also show that both models can help get approximate SPQ answers efficiently.