skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of Mentoring in STEM Faculty Leadership to Broadening Participation in STEM Faculty and Students
Award ID(s):
1818424 1818425
PAR ID:
10447917
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Social Sciences
Volume:
18
Issue:
1
ISSN:
1549-3652
Page Range / eLocation ID:
181 to 190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This research paper describes a study designed to help inform STEM faculty hiring practices at institutions of higher education in the U.S., where over the past two decades, diversity statements have become more popular components of application packages for faculty jobs. The purpose is to explore the ways and extent to which diversity statements are utilized in evaluating faculty applicants. The research questions are: (1) To what extent do universities equip search committees to evaluate applicants’ diversity statements? (2) What are STEM faculty’s perspectives of diversity statements in job applications? This paper is derived from a larger two-phase sequential mixed methods study examining the factors current faculty members and administrators consider important when hiring new STEM faculty. During the first phase, we deployed a nationwide survey to STEM faculty members and administrators who have been involved in faculty searches, with 151 of 216 respondents answering questions specific to diversity statements. About 29% of survey respondents indicated their departments required diversity statements; 59% indicated their institutions did not provide guidance for evaluating them. The second phase was a phenomenological study involving interviews of 25 survey respondents. Preliminary analyses of interview data indicated that a little more than half (52%) of participants’ departments required a diversity statement. Of the departments that required diversity statements, a little more than half used a rubric for evaluation, whether as part of a larger holistic rubric, or as a standalone rubric. For some departments that did not require diversity statements, applicants were required to discuss diversity within their other application materials. Regarding faculty members’ perceptions of diversity statements, some felt that diversity statements were necessary to assess candidates’ beliefs and experiences. Some noted that when diversity is discussed as part of another document and is not required as a stand-alone statement, it feels like the candidate “slaps on a paragraph” about diversity. Others viewed diversity statements as a “bump” that gives candidates “bonus points.” A few faculty felt that diversity statements were “redundant,” and if applicants were passionate about diversity, they would organically discuss it in the other required documents. Many shared frustrations regarding the requirement and evaluation practices. Most participants indicated their postings provided applicants with little to no guidance on what search committees were looking for in submitted diversity statements; they felt it would be beneficial for both the search committee and the applicants to have this guidance. Shared through a traditional lecture, results from this study may be used to help inform strategies for recruiting faculty who are committed to diversity - and ideally, equity and inclusion - and for addressing equity in faculty hiring. 
    more » « less
  2. This research paper describes a study designed to help inform STEM faculty hiring practices at institutions of higher education in the U.S., where over the past two decades, diversity statements have become more popular components of application packages for faculty jobs. The purpose is to explore the ways and extent to which diversity statements are utilized in evaluating faculty applicants. The research questions are: (1) To what extent do universities equip search committees to evaluate applicants’ diversity statements? (2) What are STEM faculty’s perspectives of diversity statements in job applications? This paper is derived from a larger two-phase sequential mixed methods study examining the factors current faculty members and administrators consider important when hiring new STEM faculty. During the first phase, we deployed a nationwide survey to STEM faculty members and administrators who have been involved in faculty searches, with 151 of 216 respondents answering questions specific to diversity statements. About 29% of survey respondents indicated their departments required diversity statements; 59% indicated their institutions did not provide guidance for evaluating them. The second phase was a phenomenological study involving interviews of 25 survey respondents. Preliminary analyses of interview data indicated that a little more than half (52%) of participants’ departments required a diversity statement. Of the departments that required diversity statements, a little more than half used a rubric for evaluation, whether as part of a larger holistic rubric, or as a standalone rubric. For some departments that did not require diversity statements, applicants were required to discuss diversity within their other application materials. Regarding faculty members’ perceptions of diversity statements, some felt that diversity statements were necessary to assess candidates’ beliefs and experiences. Some noted that when diversity is discussed as part of another document and is not required as a stand-alone statement, it feels like the candidate “slaps on a paragraph” about diversity. Others viewed diversity statements as a “bump” that gives candidates “bonus points.” A few faculty felt that diversity statements were “redundant,” and if applicants were passionate about diversity, they would organically discuss it in the other required documents. Many shared frustrations regarding the requirement and evaluation practices. Most participants indicated their postings provided applicants with little to no guidance on what search committees were looking for in submitted diversity statements; they felt it would be beneficial for both the search committee and the applicants to have this guidance. Shared through a traditional lecture, results from this study may be used to help inform strategies for recruiting faculty who are committed to diversity - and ideally, equity and inclusion - and for addressing equity in faculty hiring. 
    more » « less
  3. Our evidence-based practice paper will present a Teaching Excellence Network (TEN) implemented at a large, multi-campus, North-Eastern US, R1 institution. TEN was funded by a 5-year NSF IUSE grant (institutional and community transformation track) that was part of a multidisciplinary collaboration of science and engineering faculty and Learning Centers staff. We discuss our practices, the reasons behind them, and impacts on participating faculty, emphasizing building connections between the institution’s offices, departments, and schools. TEN addressed perceptions of fragmentated and siloed faculty development initiatives at our institution. Faculty development efforts are distributed across departments, including an office for teaching with technology, one for assessment and evaluation, two school-based offices, a center for faculty research excellence, and an office for DEIB efforts. While each contributes significantly to faculty development, the siloes and disconnected communication channels lead to a perception of scarcity when it comes to support around teaching. In addition, most units focus on specific areas of development and not the kind of holistic teaching support we implemented. Recently, engineering departments have hired full-time teaching-focused faculty to improve teaching practice and education quality. While some science and math departments have many teaching-focused faculty, our engineering departments often have only a few faculty in these positions. We designed our BDI to bring siloed faculty together and create easier access to the many and varied programs across campus. TEN, and our study, are grounded in questions about how institutional structures impact faculty agency and motivation. Our work is guided by three theories: Structuration, Agency, and Expectancy-Value. These theories conceptualize human motivation as being connected to instructors’ expectations of success in an endeavour (e.g., transforming aspects of their course) and the perceived value of that endeavour, while allowing us to examine the interdependence of human decision-making and institutional structures. We planned TEN around maximizing value for faculty, while generating structures that supported faculty becoming involved in our programs and focusing efforts on teaching development. TEN has two major components: summer institutes are focused on pedagogical content delivery, and the production of usable materials and course design plans; semester support groups focus on the production or implementation of specific smaller projects, or the in-depth discussion of particular research-based ideas to provide faculty continuing support and a sense of connectedness with peers. Our analysis will start from a thematic analysis of interviews with faculty, in the style of Braun and Clark, to develop a sense of our data and the impacts that this program has had on participants. We will be using our theoretical lens to look for themes around how the structures of TEN have impacted faculty. Through the iterative process of thematic analysis, other themes may also emerge for investigation, which will enrich our understanding of participants’ experiences. Presentation of these themes, alongside illustrative cases of STEM faculty, will demonstrate the impacts of TEN on participants, provide context for engaging roundtable discussions of what participants are taking away from the programs, and present implications for faculty development initiatives. 
    more » « less
  4. Previous studies have documented student–faculty interaction in STEM, but fewer studies have specifically studied negative forms of interaction such as discrimination from faculty. Using a sample of 562 STEM undergraduates from the National Longitudinal Survey of Freshmen, we use hierarchical generalized linear modeling to investigate various types of student–faculty interaction in Science, Technology, Engineering, and Math (STEM) and in particular, the link between discrimination from faculty and retention in STEM. While Black students interacted more frequently with faculty, they were also most likely to report experiencing racial/ethnic discrimination. Overall, female, Black, and Latinx students were more likely to leave STEM by the fourth year of college than male, White, and Asian American peers. Feeling that professors made a student feel uncomfortable due to race/ethnicity was negatively linked with STEM retention. None of the traditional forms of student–faculty interaction (i.e., non-discriminatory) predicted retention. Variation in patterns by race, gender, and income are discussed, as well as implications for research, policy, and practice. 
    more » « less