skip to main content


Title: Contribution of the Sub‐Surface to Electrocatalytic Activity in Atomically Precise La 0.7 Sr 0.3 MnO 3 Heterostructures
Abstract

Electrocatalytic reactions are known to take place at the catalyst/electrolyte interface. Whereas recent studies of size‐dependent activity in nanoparticles and thickness‐dependent activity of thin films imply that the sub‐surface layers of a catalyst can contribute to the catalytic activity as well, most of these studies consider actual modification of the surfaces. In this study, the role of catalytically active sub‐surface layers was investigated by employing atomic‐scale thickness control of the La0.7Sr0.3MnO3(LSMO) films and heterostructures, without altering the catalyst/electrolyte interface. The activity toward the oxygen evolution reaction (OER) shows a non‐monotonic thickness dependence in the LSMO films and a continuous screening effect in LSMO/SrRuO3heterostructures. The observation leads to the definition of an “electrochemically‐relevant depth” on the order of 10 unit cells. This study on the electrocatalytic activity of epitaxial heterostructures provides new insight in designing efficient electrocatalytic nanomaterials and core‐shell architectures.

 
more » « less
NSF-PAR ID:
10448021
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
17
Issue:
49
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The local microenvironment at the electrode‐electrolyte interface plays an important role in electrocatalytic performance. Herein, we investigate the effect of acid electrolyte anion identity on the oxygen reduction reaction (ORR) activity and selectivity of smooth Ag and Pd catalyst thin films. Cyclic voltammetry in perchloric, nitric, sulfuric, phosphoric, hydrochloric, and hydrobromic acid, at pH 1, reveals that Ag ORR activity trends as follows: HClO4>HNO3>H2SO4>H3PO4>HCl≫HBr, while Pd ORR activity trends as: HClO4>H2SO4>HNO3>H3PO4>HCl≫HBr. Moreover, rotating‐ring‐disk‐electrode selectivity measurements demonstrate enhanced 4eselectivity on both Ag and Pd, by up to 35 %H2O2and 10 %H2O2respectively, in HNO3compared to in HClO4. Relating physics‐based modeling and experimental results, we postulate that ORR performance depends greatly on anion‐related phenomena in the double layer, for instance competitive adsorption and non‐covalent interactions.

     
    more » « less
  2. Abstract

    Achieving high oxygen evolution reaction (OER) activity while maintaining performance stability is a key challenge for designing perovskite structure oxide OER catalysts, which are often unstable in alkaline environments transforming into an amorphous phase. While the chemical and structural transformation occurring during electrolysis at the electrolyte–catalyst interface is now regarded as a crucial factor influencing OER activity, here, using La0.7Sr0.3CoO3−δ(LSCO) as an active OER catalyst, the critical influence of buried layers on the oxidation current stability in nanoscopically thin, chemically and structurally evolving, catalyst layers is revealed. The use of epitaxial thin films is demonstrated to engineer both depletion layer widths and chemical stability of the catalyst support structure resulting in heterostructured anodes that maintain facile transport kinetics across the electrolyte–anode interface for atomically thin (2–3 unit cells) LSCO catalyst layers and greatly enhanced oxidation current stability as the perovskite structure OER catalysts chemically and structurally transform. This work opens up an approach to design robust and active heterostructured anodes with dynamically evolving ultrathin OER electrocatalyst layers for future green fuel technologies such as conformal coatings of high‐density 3D anode topologies for water splitting.

     
    more » « less
  3. Abstract

    In situattenuated total reflection surface enhanced infrared absorption spectroscopy (ATR‐SEIRAS) is often used to investigate the near‐surface electrocatalytic reaction environment. However, there is a gap in directly correlating the near‐surface reaction environment with electrocatalytic reaction rates. To that end, we designed an electrochemical flow reactor foroperandoelectrochemical ATR‐SEIRAS and demonstrate its capability with the CO2reduction reaction (CO2RR). Roughened gold catalyst thin films are prepared on ATR silicon crystals as a model system to probe local species under CO2RR conditions in 0.1 M KHCO3. We measured changes in the interfacial CO2concentration as a function of applied potential and electrolyte flow rate inoperando, allowing us to correlate the changes in reaction rates with the observed CO2concentration. Including the choice of the catalyst and electrolyte, coupling hydrodynamic control with ATR‐SEIRAS in this platform enables investigations of how the local microenvironment affects the activity and selectivity of electrochemical reactions.

     
    more » « less
  4. Abstract

    The main drawbacks of today's state‐of‐the‐art lithium–air (Li–air) batteries are their low energy efficiency and limited cycle life due to the lack of earth‐abundant cathode catalysts that can drive both oxygen reduction and evolution reactions (ORR and OER) at high rates at thermodynamic potentials. Here, inexpensive trimolybdenum phosphide (Mo3P) nanoparticles with an exceptional activity—ORR and OER current densities of 7.21 and 6.85 mA cm−2at 2.0 and 4.2 V versus Li/Li+, respectively—in an oxygen‐saturated non‐aqueous electrolyte are reported. The Tafel plots indicate remarkably low charge transfer resistance—Tafel slopes of 35 and 38 mV dec−1for ORR and OER, respectively—resulting in the lowest ORR overpotential of 4.0 mV and OER overpotential of 5.1 mV reported to date. Using this catalyst, a Li–air battery cell with low discharge and charge overpotentials of 80 and 270 mV, respectively, and high energy efficiency of 90.2% in the first cycle is demonstrated. A long cycle life of 1200 is also achieved for this cell. Density functional theory calculations of ORR and OER on Mo3P (110) reveal that an oxide overlayer formed on the surface gives rise to the observed high ORR and OER electrocatalytic activity and small discharge/charge overpotentials.

     
    more » « less
  5. Abstract

    Electrochemical CO2reduction (CO2RR) on copper (Cu) shows promise for higher‐value products beyond CO. However, challenges such as the limited CO2solubility, high overpotentials, and the competing hydrogen evolution reaction (HER) in aqueous electrolytes hinder the practical realization. We propose a functionalized ionic liquid (IL) which generates ion‐CO2adducts and a hydrogen bond donor (HBD) upon CO2absorption to modulate CO2RR on Cu in a non‐aqueous electrolyte. As revealed by transient voltammetry, electrochemical impedance spectroscopy (EIS), and in situ surface‐enhanced Raman spectroscopy (SERS) complemented with image charge augmented quantum‐mechanical/molecular mechanics (IC‐QM/MM) computations, a unique microenvironment is constructed. In this microenvironment, the catalytic activity is primarily governed by the IL and HBD concentrations; former controlling the double layer thickness and the latter modulating the local proton availability. This translates to ample CO2availability, reduced overpotential, and suppressed HER where C4products are obtained. This study deepens the understanding of electrolyte effects in CO2RR and the role of IL ions towards electrocatalytic microenvironment design.

     
    more » « less