skip to main content


Title: Introduced annuals mediate climate‐driven community change in Mediterranean prairies of the Pacific Northwest, USA
Abstract Aim

How climate change will alter plant functional group composition is a critical question given the well‐recognized effects of plant functional groups on ecosystem services. While climate can have direct effects on different functional groups, indirect effects mediated through changes in biotic interactions have the potential to amplify or counteract direct climatic effects. As a result, identifying the underlying causes for climate effects on plant communities is important to conservation and restoration initiatives.

Location

Western Pacific Northwest (Oregon and Washington), USA.

Methods

Utilizing a 3‐year experiment in three prairie sites across a 520‐km latitudinal climate gradient, we manipulated temperature and precipitation and recorded plant cover at the peak of each growing season. We used structural equation models to examine how abiotic drivers (i.e. temperature, moisture and soil nitrogen) controlled functional group cover, and how these groups in turn determined overall plant diversity.

Results

Warming increased the cover of introduced annual species, causing subsequent declines in other functional groups and diversity. While we found direct effects of temperature and moisture on extant vegetation (i.e. native annuals, native perennials and introduced perennials), these effects were typically amplified by introduced annuals. Competition for moisture and light or space, rather than nitrogen, were critical mechanisms of community change in this seasonally water‐limited Mediterranean‐climate system. Diversity declines were driven by reductions in native annual cover and increasing dominance by introduced annuals.

Main conclusions

A shift towards increasing introduced annual dominance in this system may be akin to that previously experienced in California grasslands, resulting in the “Californication” of Pacific Northwest prairies. Such a phenomenon may challenge local land managers in their efforts to maintain species‐rich and functionally diverse prairie ecosystems in the future.

 
more » « less
NSF-PAR ID:
10448033
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Diversity and Distributions
Volume:
27
Issue:
12
ISSN:
1366-9516
Page Range / eLocation ID:
p. 2584-2595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ecological restoration often relies on disturbance as a tool for establishing target plant communities, but disturbance can be a double‐edged sword, at times initiating invasion and unintended outcomes. Here we test how fire disturbance, designed to enhance restoration seeding success, combines with climate and initial vegetation conditions to shift perennial versus annual grass dominance and overall community diversity in Pacific Northwest grasslands. We seeded both native and introduced perennial grasses and native forbs in paired, replicated burned‐unburned plots in three sites along a latitudinal climate gradient from southern Oregon to central‐western Washington. Past restoration and climate manipulations at each site had increased the variation of starting conditions between plots. Burning promoted the expansion of extant forbs and perennial grasses across all sites. Burning also enhanced the seeding success of native perennial grass and native forbs at the northern and central site, and the success of introduced perennial grasses across all three sites. Annual grass dominance was driven more by latitude than burning, with annuals maintaining their dominance in the south and perennials in the north. At the same time, unrestored grasslands surrounding all sites remained dominated by perennial grasses, suggesting that initial plot clearing may have allowed for annual grass invasion in the southern site. When paired with disturbance, further warming may increase the risk of annual grass dominance, a potentially persistent state.

     
    more » « less
  2. Abstract

    With ongoing climate change, populations are expected to exhibit shifts in demographic performance that will alter where a species can persist. This presents unique challenges for managing plant populations and may require ongoing interventions, including in situ management or introduction into new locations. However, few studies have examined how climate change may affect plant demographic performance for a suite of species, or how effective management actions could be in mitigating climate change effects. Over the course of two experiments spanning 6 yr and four sites across a latitudinal gradient in the Pacific Northwest, United States, we manipulated temperature, precipitation, and disturbance intensity, and quantified effects on the demography of eight native annual prairie species. Each year we planted seeds and monitored germination, survival, and reproduction. We found that disturbance strongly influenced demographic performance and that seven of the eight species had increasingly poor performance with warmer conditions. Across species and sites, we observed 11% recruitment (the proportion of seeds planted that survived to reproduction) following high disturbance, but just 3.9% and 2.3% under intermediate and low disturbance, respectively. Moreover, mean seed production following high disturbance was often more than tenfold greater than under intermediate and low disturbance. Importantly, most species exhibited precipitous declines in their population growth rates (λ) under warmer‐than‐ambient experimental conditions and may require more frequent disturbance intervention to sustain populations.Aristida oligantha, a C4 grass, was the only species to have λ increase with warmer conditions. These results suggest that rising temperatures may cause many native annual plant species to decline, highlighting the urgency for adaptive management practices that facilitate their restoration or introduction to newly suitable locations. Frequent and intense disturbances are critical to reduce competitors and promote native annuals’ persistence, but even such efforts may prove futile under future climate regimes.

     
    more » « less
  3. Abstract

    Grass species (family Poaceae) are globally distributed, adapted to a wide range of climates and express a diversity of functional strategies. We explored the functional strategies of grass species using the competitor, stress tolerator, ruderal (CSR) system and asked how a species’ strategy relates to its functional traits, climatic distribution and propensity to become naturalized outside its native range. We used a global set of trait data for grass species to classify functional strategies according to the CSR system based on leaf traits. Differences in strategies in relation to lifespan (annual or perennial), photosynthetic type (C3 or C4), or naturalisation (native or introduced) were investigated. In addition, correlations with traits not included in the CSR classification were analyzed, and a model was fitted to predict a species’ average mean annual temperature and annual precipitation across its range as a function of CSR scores. Values for competitiveness were higher in C4 species than in C3 species, values for stress tolerance were higher in perennials than in annuals, and introduced species had more pronounced competitive-ruderal strategies than native species. Relationships between the CSR classification, based on leaf traits, and other functional traits were analyzed. Competitiveness was positively correlated with height, while ruderality was correlated with specific root length, indicating that both above- and belowground traits underlying leaf and root economics contribute to realized CSR strategies. Further, relationships between climate and CSR classification showed that species with competitive strategies were more common in warm climates and at high precipitation, whereas species with stress tolerance strategies were more common in cold climates and at low precipitation. The findings presented here demonstrate that CSR classification of functional strategies based on leaf traits matches expectations for the adaptations of grass species that underlie lifespan, photosynthetic type, naturalization and climate.

     
    more » « less
  4. Abstract Questions

    A recently introduced non‐native annual grass,Ventenata dubia, is challenging previous conceptions of community resistance in forest mosaic communities in the Inland Northwest. However, little is known of the drivers and potential ecological impacts of this rapidly expanding species. Here we (1) identify abiotic and biotic habitat characteristics associated with theV. dubiainvasion and examine how these differ betweenV. dubiaand other problematic non‐native annual grasses,Bromus tectorumandTaeniatherum caput‐medusae; and (2) determine how burning influences relationships betweenV. dubiaand plant community composition and structure to address potential impacts on Inland Northwest forest mosaic communities.

    Location

    Blue Mountains of the Inland Northwest, USA.

    Methods

    We measured environmental and plant community characteristics in 110 recently burned and nearby unburned plots. Plots were stratified to capture a range ofV. dubiacover, elevations, biophysical classes, and fire severities. We investigated relationships betweenV. dubia, wildfire, environmental, and plant community characteristics using non‐metric multidimensional scaling and linear regressions.

    Results

    Ventenata dubiawas most abundant in sparsely vegetated, basalt‐derived rocky scablands interspersed throughout the forested landscape. Plant communities most heavily invaded byV. dubiawere largely uninvaded by other non‐native annual grasses.Ventenata dubiawas abundant in both unburned and burned areas, but negative relationships betweenV. dubiacover and community diversity were stronger in burned plots, where keystone sagebrush species were largely absent after fire.

    Conclusions

    Ventenata dubiais expanding the overall invasion footprint into previously uninvaded communities. Burning may exacerbate negative relationships betweenV. dubiaand species richness, evenness, and functional diversity, including in communities that historically rarely burned. Understanding the drivers and impacts of theV. dubiainvasion and recognizing how these differ from other annual grass invasions may provide insight into mechanisms of community invasibility, grass‐fire feedbacks, and aid the development of species‐specific management plans.

     
    more » « less
  5. Abstract Questions

    Predicting the influence of climate change on riparian plant communities improves management strategies. The sensitivity of riparian vegetation to climate and other abiotic factors depends on interactions between properties of the ecosystem, like flood regime, and plant characteristics. To explore these interactions, we addressed three questions: (a) does the composition and diversity of riparian vegetation vary with the flood regime; (b) do abiotic correlates of vegetation, including climate and groundwater, differ between sites that flood compared to locations that did not experience floods; and (c) which plant functional groups account for differential plant community sensitivity to abiotic factors between flood regimes?

    Location

    Middle Rio Grande Valley, New Mexico.

    Methods

    We used long‐term observations of plant community composition, groundwater depth, precipitation and interpolated temperature from 24 sites spanning 210 km of the Rio Grande riparian cottonwood–willow forest to explore the relative importance of climate and hydrologic correlates of riparian vegetation diversity and composition.

    Results

    Riparian plant diversity was higher at sites flooding compared to non‐flooding sites. Plant diversity positively tracked shallower groundwater depth at flooding sites, but was best predicted by intra‐annual groundwater variability at non‐flooding sites. Plant community composition correlated with groundwater depth and air temperature at all sites, but at non‐flooding sites, also with intra‐annual groundwater variability and precipitation. Relationships between native plant cover and potential environmental drivers diverged strongly between the two flood regimes; non‐native plant cover had only weak relationships with most environmental predictors.

    Conclusions

    The current flood regime of a site determined the climate and hydrologic factors that best predicted riparian plant community composition and diversity. Relationships between plant diversity or total cover and groundwater, temperature, precipitation, or groundwater variability can change in strength or direction depending on a site's flood history, highlighting the importance of flood regime to predicting the sensitivity of riparian woodlands to future environmental change.

     
    more » « less