skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leaf‐footed bugs possess multiple hidden contrasting color signals, but only one is associated with increased body size
Abstract Antipredatory displays that incorporate hidden contrasting coloration are found in a variety of different animals. These displays are seen in organisms that have drab coloration at rest, but when disturbed reveal conspicuous coloration. Examples include the bright abdomens of mountain katydids and the colorful underwings of hawk moths. Such hidden displays can function as secondary defenses, enabling evasion of a pursuant predator. To begin to understand why some species have these displays while others do not, we conducted phylogenetic comparative analyses to investigate factors associated with the evolution of hidden contrasting coloration in leaf‐footed bugs. First, we investigated whether hidden contrasting coloration was associated with body size because these displays are considered to be more effective in larger organisms. We then investigated whether hidden contrasting coloration was associated with an alternative antipredatory defense, in this case rapid autotomy. We found that leaf‐footed bugs with hidden contrasting coloration tended to autotomize more slowly, but this result was not statistically significant. We also found that the presence of a body size association was dependent upon the form of the hidden color display. Leaf‐footed bugs that reveal red/orange coloration were the same size, on average, as species without a hidden color display. However, species that reveal white patches on a black background were significantly larger than species without a hidden color display. These results highlight the diversity of forms that hidden contrasting color signal can take, upon which selection may act differently.  more » « less
Award ID(s):
1907051
PAR ID:
10448119
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
16
ISSN:
2045-7758
Page Range / eLocation ID:
p. 8571-8578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Multimodal warning displays often pair one signal modality (odor) with a second modality (color) to avoid predation. Experiments with bird predators suggest these signal components interact synergistically, with aversive odors triggering otherwise hidden aversions to particular prey colors. In a recent study, this phenomenon was found in a jumping spider ( Habronattus trimaculatus ), with the defensive odor from a coreid bug ( Acanthocephala femorata ) triggering an aversion to red. Here, we explore how generalizable this phenomenon is by giving H. trimaculatus the choice between red or black prey in the presence or absence of defensive odors secreted from (1) eastern leaf-footed bugs ( Leptoglossus phyllopus , Hemiptera), (2) grass stinkbugs ( Mormidea pama , Hemiptera), (3) Asian ladybird beetles ( Harmonia axyridis , Coleoptera), and (4) eastern lubber grasshoppers ( Romalea microptera , Orthoptera). As expected, in the presence of the hemipteran odors, spiders were less likely to attack red prey (compared to no odor). Unexpectedly, the beetle and grasshopper odors did not bias spiders away from red. Our results with the hemipteran odors were unique to red; follow-up experiments indicated that these odors did not affect biases for/against green prey. We discuss our findings in the context of generalized predator foraging behavior and the functions of multimodal warning displays. 
    more » « less
  2. Abstract Sexually selected weapons, such as the antlers of deer, claws of crabs, and tusks of beaked whales, are strikingly diverse across taxa and even within groups of closely related species. Phylogenetic comparative studies have typically taken a simplified approach to investigate the evolution of weapon diversity, examining the gains and losses of entire weapons, major shifts in size or type, or changes in location. Less understood is how individual weapon components evolve and assemble into a complete weapon. We addressed this question by examining weapon evolution in the diverse, multi-component hind-leg and body weapons of leaf-footed bugs, superfamily Coreoidea (Hemiptera: Heteroptera). Male leaf-footed bugs use their morphological weapons to fight for access to mating territories. We used a large multilocus dataset comprised of ultraconserved element loci for 248 species and inferred evolutionary transitions among component states using ancestral state estimation. Our results suggest that weapons added components over time with some evidence of a cyclical evolutionary pattern—gains of components followed by losses and then gains again. Furthermore, our best estimate indicated that certain trait combinations evolved repeatedly across the phylogeny, suggesting that they function together in battle or that they are genetically correlated. This work reveals the remarkable and dynamic evolution of weapon form in the leaf-footed bugs and provides insights into weapon assembly and disassembly over evolutionary time. 
    more » « less
  3. Abstract Many eukaryotic organisms have environmentally acquired microbial symbionts. In animals, microbes commonly occupy the gut and may supply critical nutrients. The leaf-footed bug, Leptoglossus zonatus (Coreidae), is a true bug that is dependent upon ingestion of the free-living, soilborne bacterium Caballeronia early in development for growth and reproduction. In 2019 and 2020, we tested the ability of second instar L. zonatus to acquire Caballeronia in the canopy of pomegranate trees where L. zonatus are often found. We compared the acquisition rate of Caballeronia in nymphs left to forage for the symbiont to bugs fed Caballeronia in advance. Additionally, we aimed to determine whether the microhabitat of potential symbiont sources influenced acquisition success. We hypothesized that the acquisition rate would be heterogeneous among treatments. In 2019, ∼30% of experimental bugs acquired Caballeronia, compared to 75% of those fed the symbiont. In 2020, only about 4% of experimental bugs acquired any symbiont. The symbiont composition of caged bugs differed, and strain diversity was reduced relative to wild bugs. We concluded that Caballeronia is present in the canopy environment, but nymphs may fail to acquire it in the fragments of habitat represented by caged branches, suggesting a cost to host dependency on environmentally acquired symbionts. 
    more » « less
  4. Synopsis For decades, scientists have noted connections between individual condition and carotenoid-based coloration in terrestrial and aquatic animals. Organisms that produce more vibrant carotenoid-based coloration tend to have better physiological performance and behavioral displays compared with less colorful members of the same species. Traditional explanations for this association between ornamental coloration and performance invoked the need for color displays to be costly, but evidence for such hypothesized costs is equivocal. An alternative explanation for the condition-dependence of carotenoid-based coloration, the Shared-Pathway Hypothesis (SPH), was developed in response. This hypothesis proposes that red ketocarotenoid-based coloration is tied to core cellular processes involving a shared pathway with mitochondrial energy metabolism, making the concentration of carotenoids an index of mitochondrial function. Since the presentation of this hypothesis, empirical tests of the mechanisms proposed therein have been conducted in several species. In this manuscript, we review the SPH and the growing number of studies that have investigated a connection between carotenoid-based coloration and mitochondrial function. We also discuss future strategies for assessing the SPH to more effectively disentangle evidence that may simultaneously support evidence of carotenoid-resource tradeoffs. 
    more » « less
  5. Abstract Theory predicts that traits with heightened condition dependence, such as sexually selected traits, should be affected by inbreeding to a greater degree than other traits. The presence of environmental stress may compound the negative consequences of inbreeding depression. In this study, we examined inbreeding depression across multiple traits and whether it increased with a known form of environmental stress. We conducted our experiment using both sexes of the sexually dimorphic leaf-footed cactus bug, Narnia femorata (Hemiptera: Coreidae). Adult male cactus bugs have enlarged hind legs used as weapons in male–male contests; these traits, and their homologue in females, have been previously found to exhibit high condition dependence. In this study, we employed a small developmental group size as an environmental stress challenge. Nymph N. femorata aggregate throughout their juvenile stages, and previous work has shown the negative effects of small group size on survivorship and body size. We found evidence of inbreeding depression for survival and seven of the eight morphological traits measured in both sexes. Inbreeding depression was higher for the size of the male weapon and the female homolog. Additionally, small developmental group size negatively affected survival to adulthood. However, small group size did not magnify the effects of inbreeding on morphological traits. These findings support the hypothesis that traits with heightened condition dependence exhibit higher levels of inbreeding depression. 
    more » « less