Cloud phase and relative humidity (RH) distributions at −67° to 0°C over the Southern Ocean during austral summer are compared between in situ airborne observations and global climate simulations. A scale-aware comparison is conducted using horizontally averaged observations from 0.1 to 50 km. Cloud phase frequencies, RH distributions, and liquid mass fraction are found to be less affected by horizontal resolutions than liquid and ice water content (LWC and IWC, respectively), liquid and ice number concentrations (Ncliqand Ncice, respectively), and ice supersaturation (ISS) frequency. At −10° to 0°C, observations show 27%–34% and 17%–37% of liquid and mixed phases, while simulations show 60%–70% and 3%–4%, respectively. Simulations overestimate (underestimate) LWC and Ncliqin liquid (mixed) phase, overestimate Ncicein mixed phase, underestimate IWC in ice and mixed phases, and underestimate (overestimate) liquid mass fraction below (above) −5°C, indicating that observational constraints are needed for different cloud phases. RH frequently occurs at liquid saturation in liquid and mixed phases for all datasets, yet the observed RH in ice phase can deviate from liquid saturation by up to 20%–40% at −20° to 0°C, indicating that the model assumption of liquid saturation for coexisting ice and liquid is inaccurate for low liquid mass fractions (<0.1). Simulations lack RH variability for partial cloud fractions (0.1–0.9) and underestimate (overestimate) ISS frequency for cloud fraction <0.1 (≥0.6), implying that improving RH subgrid-scale parameterizations may be a viable path to account for small-scale processes that affect RH and cloud phase heterogeneities. Two sets of simulations (nudged and free-running) show very similar results (except for ISS frequency) regardless of sample sizes, corroborating the statistical robustness of the model–observation comparisons.
more »
« less
Evaluation of the CAM6 Climate Model Using Cloud Observations at McMurdo Station, Antarctica
Abstract A comparative analysis between observational data from McMurdo Station, Antarctica and the Community Atmosphere Model version 6 (CAM6) simulation is performed focusing on cloud characteristics and their thermodynamic conditions. Ka‐band Zenith Radar (KAZR) and High Spectral Resolution Lidar (HSRL) retrievals are used as the basis of cloud fraction and cloud phase identifications. Radiosondes released at 12‐h increments provide atmospheric profiles for evaluating the simulated thermodynamic conditions. Our findings show that the CAM6 simulation consistently overestimates (underestimates) cloud fraction above (below) 3 km in four seasons of a year. Normalized by total in‐cloud samples, ice and mixed phase occurrence frequencies are underestimated and liquid phase frequency is overestimated by the model at cloud fractions above 0.6, while at cloud fractions below 0.6 ice phase frequency is overestimated and liquid‐containing phase frequency is underestimated by the model. The cloud fraction biases are closely associated with concurrent biases in relative humidity (RH), that is, high (low) RH biases above (below) 2 km. Frequencies of correctly simulating ice and liquid‐containing phase increase when the absolute biases of RH decrease. Cloud fraction biases also show a positive correlation with RH biases. Water vapor mixing ratio biases are the primary contributor to RH biases, and hence, likely a key factor controlling the cloud biases. This diagnosis of the evident shortfalls of representations of cloud characteristics in CAM6 simulation at McMurdo Station brings new insight in improving the governing model physics therein.
more »
« less
- PAR ID:
- 10448135
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 126
- Issue:
- 16
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Three climate models are evaluated using in situ airborne observations from the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) campaign. The evaluation targets cloud phases, microphysical properties, thermodynamic conditions, and aerosol indirect effects from −40°C to 0°C. Compared with 580‐s averaged observations (i.e., 100 km horizontal scale), the Community Atmosphere Model version 6 (CAM6) shows the most similar result for cloud phase frequency distribution and allows more liquid‐containing clouds below −10°C compared with its predecessor—CAM5. The Energy Exascale Earth System Model (E3SM) underestimates (overestimates) ice phase frequencies below (above) −20°C. CAM6 and E3SM show liquid and ice water contents (i.e., LWC and IWC) similar to observations from −25°C to 0°C, but higher LWC and lower IWC than observations at lower temperatures. Simulated in‐cloud RH shows higher minimum values than observations, possibly restricting ice growth during sedimentation. As number concentrations of aerosols larger than 500 nm (Na500) increase, observations show increases of LWC, IWC, liquid, and ice number concentrations (Nliq, Nice). Number concentrations of aerosols larger than 100 nm (Na100) only show positive correlations with LWC and Nliq. From −20°C to 0°C, higher aerosol number concentrations are correlated with lower glaciation ratio and higher cloud fraction. From −40°C to −20°C, large aerosols show positive correlations with glaciation ratio. CAM6 shows small increases of LWC and Nliqwith Na500and Na100. E3SM shows small increases of Nicewith Na500. Overall, CAM6 and E3SM underestimate aerosol indirect effects on ice crystals and supercooled liquid droplets over the Southern Ocean.more » « less
-
Abstract High‐latitudinal mixed‐phase clouds significantly affect Earth's radiative balance. Observations of cloud and radiative properties from two field campaigns in the Southern Ocean and Antarctica were compared with two global climate model simulations. A cyclone compositing method was used to quantify “dynamics‐cloud‐radiation” relationships relative to the extratropical cyclone centers. Observations show larger asymmetry in cloud and radiative properties between western and eastern sectors at McMurdo compared with Macquarie Island. Most observed quantities at McMurdo are higher in the western (i.e., post‐frontal) than the eastern (frontal) sector, including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation (SW and LW), except for ice water path (IWP) being higher in the eastern sector. The two models were found to overestimate cloud fraction and LWP at Macquarie Island but underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated with SW biases and positively correlated with LW biases. The persistent negative IWP biases may have become one of the leading causes of radiative biases over the high southern latitudes, after correcting the underestimation of supercooled liquid water in the older model versions. By examining multi‐scale factors from cloud microphysics to synoptic dynamics, this work will help increase the fidelity of climate simulations in this remote region.more » « less
-
Abstract Understanding distributions of cloud thermodynamic phases is important for accurately representing cloud radiative effects and cloud feedback in a changing climate. Satellite‐based cloud phase data have been frequently used to compare with climate models, yet few studies validated them against in situ observations at a near‐global scale. This study aims to validate three satellite‐based cloud phase products using a compositive in situ airborne data set developed from 11 flight campaigns. Latitudinal‐altitudinal cross sections of cloud phase occurrence frequencies are examined. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) show the most similar vertical profiles of ice phase frequencies compared with in situ observations. The CloudSat data overestimate mixed‐phase frequencies up to 15 km but provide better sampling through cloud layers than lidar data. The DARDAR (raDAR/liDAR) data show a sharp transition between ice and liquid phase and overestimate ice phase frequency at most altitudes and latitudes. The satellite data are further evaluated for various latitudes, longitudes, and seasons, which show higher ice phase frequency in the extratropics in their respective wintertime and smaller impacts from longitudinal variations. The Southern Ocean shows a thicker mixing region where liquid and ice phases have similar frequencies compared with tropics and Northern Hemisphere (NH) extratropics. Two comparison methods with different spatiotemporal windows show similar results, which demonstrates the statistical robustness of these comparisons. Overall, this study develops a near global‐scale in situ observational data set to assess the accuracy of satellite‐based cloud phase products and investigates the key factors affecting the distributions of cloud phases.more » « less
-
The on-set of ice nucleation in mixed-phase clouds determines cloud lifetime and their microphysical properties. In this work, we develop a novel method that differentiates the early and later transition phases of mixed-phase clouds, i.e., ice crystals are initially surrounded by supercooled liquid water droplets, then as they grow, pure ice segments are formed. Using this method, we examine the relationship between the macrophysical and microphysical properties of mixed-phase clouds. The results show that evolution of cloud macrophysical properties, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the evolution of microphysical properties, represented by the increasing ice water content and decreasing liquid water content. The mass partition transition from liquid to ice becomes more significant during the later transition phase (i.e., transition phase 3) when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show significant transition from liquid to ice at a similar temperature (i.e., -17.5 °C) among three types of definitions of mixed-phase clouds based on ice mass fraction, ice number fraction, or ice spatial ratio. Aerosol indirect effects are quantified for different transition phases using number concentrations of aerosols greater than 100 nm or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice nucleating particles, which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant on the earlier transition phase when ice crystals just start to appear compared with the later transition phase. The thermodynamic and dynamic conditions are quantified for each transition phase. The results show in-cloud turbulence as a main mechanism for both the initiation of ice nucleation and the maintenance of supercooled liquid water, while updrafts are important for the latter but not the former. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics throughout cloud evolution based on this new method that categorizes cloud transition phases.more » « less