skip to main content


Title: Scattering and inverse scattering for the AKNS system: A rational function approach
Abstract

We consider the use of rational basis functions to compute the scattering and inverse scattering transforms associated with the AKNS (Ablowitz–Kaup–Newell–Segur) system. The proposed numerical forward scattering transform computes the solution of the AKNS system that is valid on the entire real axis and thereby computes a reflection coefficient at a point by solving a single linear system. The proposed numerical inverse scattering transform makes use of a novel improvement in the rational function approach to the oscillatory Cauchy operator, enabling the efficient solution of certain Riemann–Hilbert problems without contour deformations. The latter development enables access to high‐precision computations and this is demonstrated on the inverse scattering transform for the one‐dimensional Schrödinger operator with a potential.

 
more » « less
Award ID(s):
1945652
NSF-PAR ID:
10448189
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Studies in Applied Mathematics
Volume:
147
Issue:
4
ISSN:
0022-2526
Page Range / eLocation ID:
p. 1443-1480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A nonlocal nonlinear Schrödinger (NLS) equation was recently found by the authors and shown to be an integrable infinite dimensional Hamiltonian equation. Unlike the classical (local) case, here the nonlinearly induced “potential” issymmetric thus the nonlocal NLS equation is alsosymmetric. In this paper, newreverse space‐timeandreverse timenonlocal nonlinear integrable equations are introduced. They arise from remarkably simple symmetry reductions of general AKNS scattering problems where the nonlocality appears in both space and time or time alone. They are integrable infinite dimensional Hamiltonian dynamical systems. These include the reverse space‐time, and in some cases reverse time, nonlocal NLS, modified Korteweg‐deVries (mKdV), sine‐Gordon, (1 + 1) and (2 + 1) dimensional three‐wave interaction, derivative NLS, “loop soliton,” Davey–Stewartson (DS), partiallysymmetric DS and partially reverse space‐time DS equations. Linear Lax pairs, an infinite number of conservation laws, inverse scattering transforms are discussed and one soliton solutions are found. Integrable reverse space‐time and reverse time nonlocal discrete nonlinear Schrödinger type equations are also introduced along with few conserved quantities. Finally, nonlocal Painlevé type equations are derived from the reverse space‐time and reverse time nonlocal NLS equations.

     
    more » « less
  2. Abstract

    The inverse scattering transform (IST) is developed for a class of matrix nonlinear Schrödinger‐type systems whose reductions include two equations that model certain hyperfine spinspinor Bose–Einstein condensates, and two novel equations that were recently shown to be integrable, and that have applications in nonlinear optics and four‐component fermionic condensates. In addition, the general behavior of the soliton solutions for all four reductions is analyzed in detail, and some novel solutions are presented.

     
    more » « less
  3. Abstract

    We consider the mapping properties of the integral operator arising in nonlocal slender body theory (SBT) for the model geometry of a straight, periodic filament. It is well known that the classical singular SBT integral operator suffers from high wavenumber instabilities, making it unsuitable for approximating theslender body inverse problem, where the fiber velocity is prescribed and the integral operator must be inverted to find the force density along the fiber. Regularizations of the integral operator must therefore be used instead. Here, we consider two regularization methods: spectral truncation and the‐regularization of Tornberg and Shelley (2004). We compare the mapping properties of these approximations to the underlying partial differential equation (PDE) solution, which for the inverse problem is simply the Stokes Dirichlet problem with data constrained to be constant on cross sections. For the straight‐but‐periodic fiber with constant radius, we explicitly calculate the spectrum of the operator mapping fiber velocity to force for both the PDE and the approximations. We prove that the spectrum of the original SBT operator agrees closely with the PDE operator at low wavenumbers but differs at high frequencies, allowing us to define a truncated approximation with a wavenumber cutoff. For both the truncated and‐regularized approximations, we obtain rigorous‐based convergence to the PDE solution as: A fiber velocity withregularity givesconvergence, while a fiber velocity with at leastregularity yieldsconvergence. Moreover, we determine the dependence of the‐regularized error estimate on the regularization parameter.

     
    more » « less
  4. The Cable equation is one of the most fundamental equations for modeling neuronal dynamics. In this article, we consider a high order compact finite difference numerical solution for the fractional Cable equation, which is a generalization of the classical Cable equation by taking into account the anomalous diffusion in the movement of the ions in neuronal system. The resulting finite difference scheme is unconditionally stable and converges with the convergence order ofin maximum norm, 1‐norm and 2‐norm. Furthermore, we present a fast solution technique to accelerate Toeplitz matrix‐vector multiplications arising from finite difference discretization. This fast solution technique is based on a fast Fourier transform and depends on the special structure of coefficient matrices, and it helps to reduce the computational work fromrequired by traditional methods towithout using any lossy compression, whereandτis the size of time step,andhis the size of space step. Moreover, we give a compact finite difference scheme and consider its stability analysis for two‐dimensional fractional Cable equation. The applicability and accuracy of the scheme are demonstrated by numerical experiments to support our theoretical analysis.

     
    more » « less
  5. In recent years, significant work has been devoted to the use of angle‐resolved elastic scattering for the extraction of nuclear morphology in tissue. By treating the nucleus as a Mie scattering object, techniques such as angle‐resolved low‐coherence interferometry (a/LCI) have demonstrated substantial success in identifying nuclear alterations associated with dysplasia. Because optical biopsies are inherently noninvasive, only a small, discretized portion of the 4π scattering field can be collected from tissue, limiting the amount of information available for diagnostic purposes. In this work, we comprehensively characterize the diagnostic impact of variations in angular sampling, range and noise for inverse light scattering analysis of nuclear morphology, using a previously reported dataset from 40 patients undergoing a/LCI optical biopsy for cervical dysplasia. The results from this analysis are applied to a benchtop scanning a/LCI system which compromises angular range for wide‐area scanning capability. This work will inform the design of next‐generation optical biopsy probes by directing optical design towards parameters which offer the most diagnostic utility.

     
    more » « less