We present a phase-field (PF) model to simulate the microstructure evolution occurring in polycrystalline materials with a variation in the intra-granular dislocation density. The model accounts for two mechanisms that lead to the grain boundary migration: the driving force due to capillarity and that due to the stored energy arising from a spatially varying dislocation density. In addition to the order parameters that distinguish regions occupied by different grains, we introduce dislocation density fields that describe spatial variation of the dislocation density. We assume that the dislocation density decays as a function of the distance the grain boundary has migrated. To demonstrate and parameterize the model, we simulate microstructure evolution in two dimensions, for which the initial microstructure is based on real-time experimental data. Additionally, we applied the model to study the effect of a cyclic heat treatment (CHT) on the microstructure evolution. Specifically, we simulated stored-energy-driven grain growth during three thermal cycles, as well as grain growth without stored energy that serves as a baseline for comparison. We showed that the microstructure evolution proceeded much faster when the stored energy was considered. A non-self-similar evolution was observed in this case, while a nearly self-similar evolution was found when the microstructure evolution is driven solely by capillarity. These results suggest a possible mechanism for the initiation of abnormal grain growth during CHT. Finally, we demonstrate an integrated experimental-computational workflow that utilizes the experimental measurements to inform the PF model and its parameterization, which provides a foundation for the development of future simulation tools capable of quantitative prediction of microstructure evolution during non-isothermal heat treatment.
The role of anisotropic grain boundary energy in grain growth is investigated using textured microstructures that contain a high proportion of special grain boundaries. Textured and untextured Ca‐doped alumina was prepared by slip casting inside and outside a high magnetic field, respectively. At 1600°C, the textured microstructure exhibits faster growth than the untextured microstructure and its population of low‐angle boundaries increases. Atomic force microscopy (AFM) is employed to measure the geometry of thermal grooves to assess the relative grain boundary energy of these systems before and after growth. In the textured microstructure, the grain boundary energy distribution narrows and shifts to a lower average energy. Conversely, the energy distribution broadens for the untextured microstructure as it grows and exhibits abnormal grain growth. Further analysis of the boundary networks neighboring abnormal grains reveals an energy incentive that facilitates their growth. These results suggest that coarsening is not the only dominant grain growth mechanism and that the system can lower its energy effectively by replacing high energy boundaries with those of low energy. The faster growth of lower energy boundaries suggests that isotropic simulations do not adequately account for anisotropic grain growth mechanisms or anisotropic mobility.
more » « less- NSF-PAR ID:
- 10448252
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 107
- Issue:
- 3
- ISSN:
- 0002-7820
- Format(s):
- Medium: X Size: p. 1725-1735
- Size(s):
- p. 1725-1735
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3
x La2/3-x TiO3(LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3(LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity. -
Abstract The three‐dimensional microstructure of 8% yttria‐stabilized zirconia (YSZ) was measured by electron backscatter diffraction and focused ion beam serial sectioning. The relative grain boundary energies as a function of all five crystallographic grain boundary parameters were determined based on the assumption of thermodynamic equilibrium at the internal triple junctions. Grain boundaries with (100) orientations have low energies compared to boundaries of other orientations, and all [100] twist boundaries have relatively low energies. Other classes of boundaries with lower than average energies include [100] symmetric tilt boundaries with disorientations less than 40° and [111] twist boundaries with disorientations greater than 20°. At fixed misorientations, the relative areas of boundaries are inversely correlated to the relative grain boundary energy. The results suggest that texturing microstructures to increase the relative areas of [100] twist boundaries might increase the oxygen ion conductivity of YSZ ceramics.
-
Abstract The study of grain boundaries is the foundation to understanding many of the intrinsic physical properties of bulk metals. Here, the preparation of microscale thin‐film gold bicrystals, using rapid melt growth, is presented as a model system for studies of single grain boundaries. This material platform utilizes standard fabrication tools and supports the high‐yield growth of thousands of bicrystals per wafer, each containing a grain boundary with a unique <111> tilt character. The crystal growth dynamics of the gold grains in each bicrystal are mediated by platinum gradients, which originate from the gold–platinum seeds responsible for gold crystal nucleation. This crystallization mechanism leads to a decoupling between crystal nucleation and crystal growth, and it ensures that the grain boundaries form at the middle of the gold microstructures and possess a uniform distribution of misorientation angles. It is envisioned that these bicrystals will enable the systematic study of the electrical, optical, chemical, thermal, and mechanical properties of individual grain boundary types.
-
Many technologically useful materials are polycrystals composed of small monocrystalline grains that are separated by grain boundaries of crystallites with different lattice orientations. The energetics and connectivities of the grain boundaries play an essential role in defining the effective properties of materials across multiple scales. In this paper we derive a Fokker–Planck model for the evolution of the planar grain boundary network. The proposed model considers anisotropic grain boundary energy which depends on lattice misorientation and takes into account mobility of the triple junctions, as well as independent dynamics of the misorientations. We establish long time asymptotics of the Fokker–Planck solution, namely the joint probability density function of misorientations and triple junctions, and closely related the marginal probability density of misorientations. Moreover, for an equilibrium configuration of a boundary network, we derive explicit local algebraic relations, a generalized Herring Condition formula, as well as formula that connects grain boundary energy density with the geometry of the grain boundaries that share a triple junction. Although the stochastic model neglects the explicit interactions and correlations among triple junctions, the considered specific form of the noise, under the fluctuation–dissipation assumption, provides partial information about evolution of a grain boundary network, and is consistent with presented results of extensive grain growth simulations.more » « less