skip to main content

Title: Seasonal Hydroclimate Recorded in High Resolution δ 18 O Profiles Across Pinus palustris Growth Rings

Rainfall amount and intensity are increasing under anthropogenic climate change, but many instrument records span less than a century. The oxygen isotopic composition of tree‐ring cellulose (δ18Ocell) reflects local source water, climate, and tree physiology. The patterns of δ18Ocellwithin tree‐rings has the potential to extend pre‐instrument climate records with subannual resolution, but the influences on intra‐ring δ18Ocellprofiles are unexplored in many settings. In this study, high‐resolution δ18Ocellprofiles were analyzed on three longleaf pine trees growing in a native savanna in Louisiana, United States. The time series covers a wide range of rainfall conditions from 2001 to 2008 C.E. with a total of 421 δ18Ocellanalyses. The δ18Ocellvalues for individual years are well correlated with each other both within and between trees (r = 0.71–0.78). We used principal components analysis andk‐means clustering to differentiate δ18Ocellprofiles into two groupings: symmetrical δ18Ocellprofiles versus asymmetrical profiles that have depressed latewood δ18Ocellvalues. The slope of latewood δ18Ocellprofiles and mean δ18Ocellvalues of latewood tissue correlate with total June‐November precipitation. We hypothesize that poorly drained soils in the study area mediate the influence of any individual storm event: in dry years,18O‐depleted signals from convective storms are moderated by subsequent evaporative enrichment of standing water, whereas in wet years, increased humidity and frequent re‐supply of18O‐depleted water overrides evaporative enrichment effects, resulting in low δ18Ocellof latewood. These results suggest that δ18Ocellproxies for tropical storm occurrence need to account for soil conditions at the site of tree growth.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tree‐ring carbon and oxygen isotope ratios have been used to understand past dynamics in forest carbon and water cycling. Recently, this has been possible for different parts of single growing seasons by isolating anatomical sections within individual annual rings. Uncertainties in this approach are associated with correlated climate legacies that can occur at a higher frequency, such as across successive seasons, or a lower frequency, such as across years. The objective of this study was to gain insight into how legacies affect cross‐correlation in the δ13C and δ18O isotope ratios in the earlywood (EW) and latewood (LW) fractions ofPinus ponderosatrees at thirteen sites across a latitudinal gradient influenced by the North American Monsoon (NAM) climate system. We observed that δ13C from EW and LW has significant positive cross‐correlations at most sites, whereas EW and LW δ18O values were cross‐correlated at about half the sites. Using combined statistical and mechanistic models, we show that cross‐correlations in both δ13C and δ18O can be largely explained by a low‐frequency (multiple‐year) mode that may be associated with long‐term climate change. We isolated, and statistically removed, the low‐frequency correlation, which resulted in greater geographical differentiation of the EW and LW isotope signals. The remaining higher‐frequency (seasonal) cross‐correlations between EW and LW isotope ratios were explored using a mechanistic isotope fractionation–climate model. This showed that lower atmospheric vapor pressure deficits associated with monsoon rain increase the EW‐LW differentiation for both δ13C and δ18O at southern sites, compared to northern sites. Our results support the hypothesis that dominantly unimodal precipitation regimes, such as near the northern boundary of the NAM, are more likely to foster cross‐correlations in the isotope signals of EW and LW, potentially due to greater sharing of common carbohydrate and soil water resource pools, compared to southerly sites with bimodal precipitation regimes.

    more » « less
  2. Marine sediments, speleothems, paleo-lake elevations, and ice core methane and δ18O of O2 (δ18Oatm) records provide ample evidence for repeated abrupt meridional shifts in tropical rainfall belts throughout the last glacial cycle. To improve understanding of the impact of abrupt events on the global terrestrial biosphere, we present composite records of δ18Oatm and inferred changes in fractionation by the global terrestrial biosphere (ΔεLAND) from discrete gas measurements in the WAIS Divide (WD) and Siple Dome (SD) Antarctic ice cores. On the common WD timescale, it is evident that maxima in ΔεLAND are synchronous with or shortly follow small-amplitude WD CH4 peaks that occur within Heinrich stadials 1, 2, 4, and 5 – periods of low atmospheric CH4 concentrations. These local CH4 maxima have been suggested as markers of abrupt climate responses to Heinrich events. Based on our analysis of the modern seasonal cycle of gross primary productivity (GPP)-weighted δ18O of terrestrial precipitation (the source water for atmospheric O2 production), we propose a simple mechanism by which ΔεLAND tracks the centroid latitude of terrestrial oxygen production. As intense rainfall and oxygen production migrate northward, ΔεLAND should decrease due to the underlying meridional gradient in rainfall δ18O. A southward shift should increase ΔεLAND. Monsoon intensity also influences δ18O of precipitation, and although we cannot determine the relative contributions of the two mechanisms, both act in the same direction. Therefore, we suggest that abrupt increases in ΔεLAND unambiguously imply a southward shift of tropical rainfall. The exact magnitude of this shift, however, remains under-constrained by ΔεLAND
    more » « less
  3. Abstract

    In 2019, four ice cores were recovered from the world's highest tropical mountain, Nevado Huascarán (Cordillera Blanca, Peru; 9.11°S, 77.61°W). Composite hydroclimate records of the two Col cores (6,050 masl) and the two Summit cores (6,768 masl) are compared to gridded gauge‐analysis and reanalysis climate data for the most recent 60‐year. Spatiotemporal correlation analyses suggest that the ice core oxygen stable isotope (δ18O) record largely reflects tropical Pacific climate variability, particularly in the NINO3.4 region. By extension, the δ18O record is strongly related to rainfall over the Amazon Basin, as teleconnections between the El Niño Southern Oscillation and hydrological behavior are the main drivers of the fractionation of water isotopes. However, on a local scale, modulation of the stable water isotopes appears to be more closely governed by upper atmospheric temperatures than by rainfall amount. Over the last 60 years, the statistical significance of the climate/δ18O relationship has been increasing contemporaneously with the atmospheric and oceanic warming rates and shifts in the Walker circulation. Isotopic records from the Summit appear to be more sensitive to large‐scale temperature changes than the records from the Col. These results may have substantial implications for modeling studies of the behavior of water isotopes at high elevations in the tropical Andes.

    more » « less
  4. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

    more » « less
  5. Abstract

    The 1783–1784 CE Laki eruption in Iceland was one of the largest, in terms of the mass of SO2emitted, high‐latitude eruptions in the last millennium, but the seasonal and regional climate response was heterogeneous in space and time. Although the eruption did not begin until early June, tree‐ring maximum latewood density (MXD) reconstructions from Alaska suggest that the entire 1783 summer was extraordinarily cold. We use high‐resolution quantitative wood anatomy, climate model simulations, and proxy systems modeling to resolve the intra‐annual climate effects of the Laki eruption on temperatures over northwestern North America. We measured wood anatomical characteristics of white spruce (Picea glauca) trees from two northern Alaska sites. Earlywood cell characteristics of the 1783 ring are normal, while latewood cell wall thickness is significantly and anomalously reduced compared to non‐eruption years. Combined with complementary evidence from climate model experiments and proxy systems modeling, these features indicate an abrupt and premature cessation of cell wall thickening due to a rapid temperature decrease toward the end of the growing season. Reconstructions using conventional annual resolution MXD likely over‐estimate total growing season cooling in this year, while ring width fails to capture this abrupt late‐summer volcanic signal. Our study has implications not only for the interpretation of the climatic impacts of the Laki eruption in North America, but more broadly demonstrates the importance of timing and internal variability when comparing proxy temperature reconstructions and climate model simulations. It further demonstrates the value of developing cellular‐scale tree‐ring proxy measurements for paleoclimatology.

    more » « less