Abstract Understanding the fitness consequences of different life histories is critical for explaining their diversity and for predicting effects of changing environmental conditions. However, current theory on plant life histories relies on phenomenological, rather than mechanistic, models of resource production.We combined a well‐supported mechanistic model of ontogenetic growth that incorporates differences in the size‐dependent scaling of gross resource production and maintenance costs with a dynamic optimization model to predict schedules of reproduction and prolonged dormancy (plants staying below ground for ≥1 growing season) that maximize lifetime offspring production.Our model makes three novel predictions: First, maintenance costs strongly influence the conditions under which a monocarpic or polycarpic life history evolves and how resources should be allocated to reproduction by polycarpic plants. Second, in contrast to previous theory, our model allows plants to compensate for low survival conditions by allocating a larger proportion of resources to storage and thereby improving overwinter survival. Incorporating this ecological mechanism in the model is critically important because without it our model never predicts significant investment into storage, which is inconsistent with empirical observations. Third, our model predicts that prolonged dormancy may evolve solely in response to resource allocation trade‐offs.Significance. Our findings reveal that maintenance costs and the effects of resource allocation on survival are primary determinants of the fitness consequences of different life history strategies, yet previous theory on plant life history evolution has largely ignored these factors. Our findings also validate recent arguments that prolonged dormancy may be an optimal response to costs of sprouting. These findings have broad implications for understanding patterns of plant life history variation and predicting plant responses to changing environments.
more »
« less
The influence of life‐history strategy on ecosystem sensitivity to resource fluctuations
Abstract To cope with uncertainty and variability in their environment, plants evolve distinct life‐history strategies by allocating different fractions of energy to growth, survival and fecundity. These differences in life‐history strategies could potentially influence ecosystem‐level dynamics, such as the sensitivity of primary production to resource fluctuations. However, linkages between evolutionary and ecosystem dynamics are not well understood.We used an annual plant population model to ask, when might differences in plant life‐history strategies produce differences in the sensitivity of primary production to resource fluctuations?Consistent with existing theory, we found that a highly variable and unpredictable environment led to the evolution of a conservative strategy characterized by relatively low and invariant germination fractions, while a variable but predictable environment favoured a riskier strategy featuring more variable germination fractions. Unexpectedly, we found that the influence of life‐history strategy on the sensitivity of production to resource fluctuations depended on competitive interactions, specifically the rate at which production saturates with the number of competing individuals. Rapid saturation overwhelms the influence of life‐history strategy, but when production saturates more slowly, the risky strategy translated to high sensitivity, whereas the conservative strategy translated to low sensitivity.Empirical estimates from Sonoran Desert annual plant populations indicate that production saturates relatively rapidly with the number of individuals for most species, suggesting that life‐history differences are unlikely to alter sensitivity of production to resource fluctuations, at least in this community.Synthesis. Our modelling results imply that research to understand the sensitivity of primary production to resource fluctuations should focus more on the intraspecific competitive interactions shaping the density–yield relationship than on the life‐history strategies that determine temporal risk‐spreading.
more »
« less
- Award ID(s):
- 1933612
- PAR ID:
- 10448304
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Ecology
- Volume:
- 109
- Issue:
- 12
- ISSN:
- 0022-0477
- Page Range / eLocation ID:
- p. 4081-4091
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees in a primary, neotropical forest. We classified trees along two life history axes: afast–slowaxis characterized by a growth–survival trade‐off, and astature–recruitmentaxis with tall,long‐lived pioneersat one end and short,short‐lived recruitersat the other.Relative abundance, richness, productivity and light interception follow an approximate power law, systematically shifting over an order of magnitude with tree size.Slowsaplings dominate the understorey, butslowtrees decline to parity with rapidly growingfastandlong‐lived pioneerspecies in the canopy.Like the community as a whole,slowspecies are the closest to obeying the energy equivalence rule (EER)—with equal productivity per size class—but other life histories strongly increase productivity with tree size. Productivity is fuelled by resources, and the scaling of light interception corresponds to the scaling of productivity across life history strategies, withslowandallspecies near solar energy equivalence. This points towards a resource‐use corollary to the EER: the resource equivalence rule.Fitness trade‐offs associated with tree size and life history may promote coexistence in tropical forests by limiting niche overlap and reducing fitness differences.Synthesis. Tree life history strategies describe the different ways trees grow, survive and recruit in the understorey. We show that the proportion of trees with a pioneer life history strategy increases steadily with tree size, as pioneers become relatively more abundant, productive, diverse and capture more resources towards the canopy. Fitness trade‐offs associated with size and life history strategy offer a mechanism for coexistence in tropical forests.more » « less
-
Summary Allocation of leaf phosphorus (P) among different functional fractions represents a crucial adaptive strategy for optimizing P use. However, it remains challenging to monitor the variability in leaf P fractions and, ultimately, to understand P‐use strategies across diverse plant communities.We explored relationships between five leaf P fractions (orthophosphate P, Pi; lipid P, PL; nucleic acid P, PN; metabolite P, PM; and residual P, PR) and 11 leaf economic traits of 58 woody species from three biomes in China, including temperate, subtropical and tropical forests. Then, we developed trait‐based models and spectral models for leaf P fractions and compared their predictive abilities.We found that plants exhibiting conservative strategies increased the proportions of PNand PM, but decreased the proportions of Piand PL, thus enhancing photosynthetic P‐use efficiency, especially under P limitation. Spectral models outperformed trait‐based models in predicting cross‐site leaf P fractions, regardless of concentrations (R2 = 0.50–0.88 vs 0.34–0.74) or proportions (R2 = 0.43–0.70 vs 0.06–0.45).These findings enhance our understanding of leaf P‐allocation strategies and highlight reflectance spectroscopy as a promising alternative for characterizing large‐scale leaf P fractions and plant P‐use strategies, which could ultimately improve the physiological representation of the plant P cycle in land surface models.more » « less
-
Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Bet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, though delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were 2 to 5 times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is insufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.more » « less
An official website of the United States government
