skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Scaling and relative size of the human, nonhuman ape, and baboon calcaneus
Abstract

Among human and nonhuman apes, calcaneal morphology exhibits significant variation that has been related to locomotor behavior. Due to its role in weight‐bearing, however, both body size and locomotion may impact calcaneal morphology. Determining how calcaneal morphologies vary as a function of body size is thus vital to understanding calcaneal functional adaptation. Here, we study calcaneus allometry and relative size in humans (n = 120) and nonhuman primates (n = 278), analyzing these relationships in light of known locomotor behaviors. Twelve linear measures and three articular facet surface areas were collected on calcaneus surface models. Body mass was estimated using femoral head superoinferior breadth. Relationships between calcaneal dimensions and estimated body mass were analyzed across the sample using phylogenetic least squares regression analyses (PGLS). Differences between humans and pooled nonhuman primates were tested using RMA ANCOVAs. Among (and within) genera residual differences from both PGLS regressions and isometry were analyzed using ANOVAs with post hoc multiple comparison tests. The relationships between all but two calcaneus dimensions and estimated body mass exhibit phylogenetic signal at the smallest taxonomic scale. This signal disappears when reanalyzed at the genus level. Calcaneal morphology varies relative to both body size and locomotor behavior. Humans have larger calcanei for estimated body mass relative to nonhuman primates as a potential adaptation for bipedalism. More terrestrial taxa exhibit longer calcaneal tubers for body mass, increasing the triceps surae lever arm. Among nonhuman great apes, more arboreal taxa have larger cuboid facet surface areas for body mass, increasing calcaneocuboid mobility.

 
more » « less
NSF-PAR ID:
10448323
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
305
Issue:
1
ISSN:
1932-8486
Format(s):
Medium: X Size: p. 100-122
Size(s):
p. 100-122
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    Pelvic form is hypothesized to reflect locomotor adaptation in anthropoids. Most observed variation is found in the ilium, which traditionally is thought to reflect thoracic and shoulder morphology. This article examines the articulated bony pelvis of anthropoids in three dimensions (3D) to test hypothesized variation in pelvic anatomy related to overall torso form.

    Materials and Methods

    Sixty landmarks were collected on articulated pelves from 240 anthropoid individuals. Landmark data were subjected to a Generalized Procrustes Analysis. Principal Components Analysis was used to identify trends among taxa. Linear metrics were extracted, and bivariate allometric analysis was used to compare intergroup differences and scaling trends of specific dimensions.

    Results

    The combination of 3D and bivariate allometric analysis demonstrates a complex pattern of locomotor/phylogenetic and allometric influences on pelvic morphology. Apes have relatively narrower dorsal interiliac spacing than do most monkeys, with relatively smaller spinal muscle attachment areas but only minimally wider ventral bi‐iliac breadths. Hylobatids and atelids have a relatively more cranial position of their sacra than do other taxa, and hylobatids and cercopithecids relatively more retroflexed ischia. Within groups, the three pelvic joints (lumbosacral, sacroiliac, and hip) become relatively closer together with increasing body size.

    Conclusions

    A three‐dimensional consideration of the articulated pelvis in anthropoids reveals determinants of pelvic variation not previously appreciated by studies of isolated hipbones. This study provides no support for the hypothesis that the ape pelvis is mediolaterally broader than that of monkeys in relative terms, as would be expected if iliac shape is related to hypothesized differences in thoracic breadth and shoulder orientation. Instead, apes, especially great apes, have relatively narrow sacra and longer lower pelves, related to their shorter, stiffer lumbar spines and torsos. This difference, coupled with strong positive allometry of iliac breadth and negative allometry of key pelvic lengths, along with some variation in ischial morphology in certain taxa, explains much of the variation in pelvic form among anthropoid primates.

     
    more » « less
  2. Leaping is an important locomotor behavior for arboreal taxa such as primates, providing means to cross discontinuous substrates, escape predation, and/or capture prey. Primates that leap frequently have relatively longer hindlimbs than those taxa that leap less often. However, it is unknown if this pattern holds across a broader phylogenetic sample that includes non-primate arboreal taxa and non-primate specialized leapers. Here, we examine if relative hindlimb length and segmental proportions correlate with locomotor category across a sample of small-bodied (800g) mammals. Lengths of six hindlimb elements (summing to total hindlimb length) were measured on micro-computed tomography scans. Total hindlimb length was regressed against body mass to calculate relative hindlimb length. Segmental proportions were calculated as the ratio of femoral, tibial, and pedal (the sum of calcaneal, cuboidal, metatarsal, and phalangeal lengths) lengths to total hindlimb length. We found that while three arboreal/scansorial taxa (common marmosets, greater dwarf lemurs, and palm squirrels) exhibit short hindlimbs relative to their body mass, all other arboreal and scansorial taxa have relatively long hindlimbs. Most arboreal, scansorial, terrestrial, and fossorial taxa distribute length evenly across segments (femur, tibia, and pes each comprise 33% of total hindlimb length). Saltatorialists (e.g., jerboas and kangaroo rats) were the only locomotor group with exceptional proportions, with pedal segments contributing 38% of total hindlimb length. These results suggest to us that segmental proportions may distinguish specialized ricochetal hoppers from taxa that leap sporadically, while relative hindlimb length may predict general leaping ability across mammals. 
    more » « less
  3. The foot plays a prominent role in weight-bearing suggesting it may reflect locomotor variation. Despite the immense amount of foot research, the calcaneus has been relatively understudied. Here we analyzed the entire calcaneal shape of Gorilla gorilla gorilla (n=41), Gorilla beringei graueri (n=17) and Gorilla beringei beringei (n=8) to understand how morphology relates to locomotor behavior. Calcanei were surface scanned and external shape analyzed using a three-dimensional geometric morphometric sliding semilandmark analysis. Semilandmarks were slid to minimize the bending energy of the thin plate spline interpolation function relative to the updated Procrustes average. Generalized Procrustes Analysis was used to align landmark configurations and shape variation was summarized using a principal components analysis. Procrustes distances between species were calculated and resampling statistics were run to test for group differences. All subspecies demonstrate statistically different morphologies (p<0.005 for pairwise comparisons). G. b. graueri separates from other subspecies based on posterolateral morphology, with G. b. graueri demonstrating an elongated peroneal trochlea, and thus more bone superiorly than G. g. gorilla. Compared to G. b. beringei, G. b. graueri has less bone inferiorly near the tuberosity. Cuboid and posterior talar facet shapes correlate with arboreality. G. b. beringei (most terrestrial) has a flatter cuboid facet and a more transversely oriented/relatively smaller posterior talar facet than G. g. gorilla (most arboreal) and G. b. graueri represents an intermediate morphology. These differences demonstrate a relationship between calcaneal shape and locomotor behavior and suggest that G. b. graueri may load its foot differently from the other subspecies. This project was supported by NSF grant # BCS - 1824630. 
    more » « less
  4. Abstract Objectives

    The competing functional demands of diarthrodial joints, permitting mobility while retaining enough stability to transmit forces across the joint, have been linked with the shape and size of the joint's articular surfaces. A clear understanding of the relationship between joint morphology and joint movement potential is important for reconstructing locomotor behaviors in fossil taxa.

    Methods

    In a sample of matched tali and calcanei of lorisids (n = 28) and cheirogaleids (n = 38), we quantify the surface areas of the talar and calcaneal ectal (=posterior talocalcaneal) articular surfaces and model the principal curvatures of these surfaces with quadric formulas. These two taxonomic groups have similar body masses, but differ substantially in positional behavior, so that differences in joint surface morphology should reflect adaptive demands of their locomotor behavior.

    Results

    Compared with cheirogaleids, lorisids exhibit: (a) a significantly greater area difference between their paired joint surfaces; and (b) a more pronounced saddle shape for the talar ectal facet.

    Conclusion

    The increased subtalar joint mobility observed in lorisids may be achieved by increasing the amount of sliding and rolling that can occur at the subtalar joint. The subtalar joint morphology observed in two fossil euarchontans, the plesiadapiformsPurgatoriussp. andPlesiadapis cookei, compares favorably with the morphology observed among lorisids, potentially suggesting antipronograde postures within these extinct taxa.

     
    more » « less
  5. Abstract

    Echolocation is the primary sense used by most bats to navigate their environment. However, the influence of echolocating behaviors upon the morphology of the auditory apparatus remains largely uninvestigated. While it is known that middle ear ossicle size scales positively with body mass across mammals, and that peak call frequency scales negatively with body mass among bats, there are still large gaps in our understanding of the degree to which allometry or ecology influences the morphology of the chiropteran auditory apparatus. To investigate this, we used μCT datasets to quantify three morphological components of the inner and middle ear: ossicle size, ossicle shape, and cochlear spirality. These data were collected across 27 phyllostomid species, spanning a broad range of body sizes, habitats, and dietary categories, and the relationships between these variables and ear morphology were assessed using a comparative phylogenetic approach. Ossicle size consistently scaled with strong negative allometry relative to body mass. Cochlear spirality was significantly (p = .025) associated with wing aspect ratio (a proxy for habitat use) but was not associated with body mass. From a morphological perspective, the malleus and incus exhibited some variation in kind with diet and call frequency, while stapes morphology is more closely tied to body size. Future work will assess these relationships within other chiropteran lineages, and investigate potential morphological differences in the middle and inner ear of echolocating‐vs‐non‐echolocating taxa.

     
    more » « less