skip to main content

Title: Comprehensive Record of Volcanic Eruptions in the Holocene (11,000 years) From the WAIS Divide, Antarctica Ice Core

A comprehensive record (WHV2020) of explosive volcanic eruptions in the last 11,000 years is reconstructed from the West Antarctica Ice Sheet Divide deep ice core (WDC). The chronological list of 426 large volcanic eruptions in the Southern Hemisphere and the low latitudes during the Holocene are of the highest quality of all volcanic records from ice cores, owing to the high‐resolution chemical measurement of the ice core and the exceptionally accurate WDC timescale. No apparent trend is found in the frequency (number of eruptions per millennium) of volcanic eruptions, and the number of eruptions in the most recent millennium (1,000–2,000 CE) is only slightly higher than the average in the last 11 millennia. The atmospheric aerosol mass loading of climate‐impacting sulfur, estimated from measured volcanic sulfate deposition, is dominated by explosive eruptions with extraordinarily high sulfur mass loading. Signals of three major volcanic eruptions are detected in the second half of the 17th century (1700–1600) BCE when the Thera volcano in the eastern Mediterranean was suspected to have erupted; the fact that these signals are synchronous with three volcanic eruptions detected in Greenland ice cores suggests that these are likely eruptions in the low latitudes and none should be attributed exclusively to Thera. A number of eruptions with very high sulfur mass loading took place shortly before and during an early Holocene climatic episode, the so‐called 8.2 ka event, and are speculated to have contributed to the initiation and magnitude of the cold event.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The injection of sulfur into the stratosphere by volcanic eruptions is thedominant driver of natural climate variability oninterannual to multidecadal timescales. Based on a set of continuous sulfateand sulfur records from a suite of ice cores from Greenland and Antarctica,the HolVol v.1.0 database includes estimates of the magnitudes andapproximate source latitudes of major volcanic stratospheric sulfurinjection (VSSI) events for the Holocene (from 9500 BCE or 11 500 years BP to1900 CE), constituting an extension of the previous record by 7000 years.The database incorporates new-generation ice-core aerosol records with asub-annual temporal resolution and a demonstrated sub-decadal dating accuracyand precision. By tightly aligning and stacking the ice-core records on theWD2014 chronology from Antarctica, we resolve long-standing inconsistenciesin the dating of ancient volcanic eruptions that arise from biased (i.e.,dated too old) ice-core chronologies over the Holocene for Greenland. Wereconstruct a total of 850 volcanic eruptions with injections in excess of 1 teragram of sulfur (Tg S); of these eruptions, 329 (39 %) are located in the low latitudes with bipolarsulfate deposition, 426 (50 %) are located in the Northern Hemisphere extratropics (NHET) and 88 (10 %) are located in the Southern Hemisphere extratropics (SHET). The spatial distribution of the reconstructed eruption locationsis in agreement with prior reconstructions for the past 2500 years. Intotal, these eruptions injected 7410 Tg S into thestratosphere: 70 % from tropical eruptions and 25 % from NHextratropical eruptions. A long-term latitudinally and monthly resolvedstratospheric aerosol optical depth (SAOD) time series is reconstructed fromthe HolVol VSSI estimates, representing the first Holocene-scalereconstruction constrained by Greenland and Antarctica ice cores. These newlong-term reconstructions of past VSSI and SAOD variability confirm evidencefrom regional volcanic eruption chronologies (e.g., from Iceland) in showingthat the Early Holocene (9500–7000 BCE) experienced a higher number ofvolcanic eruptions (+16 %) and cumulative VSSI (+86 %) compared withthe past 2500 years. This increase coincides with the rapid retreat of icesheets during deglaciation, providing context for potential future increasesin volcanic activity in regions under projected glacier melting in the 21stcentury. The reconstructed VSSI and SAOD data are available at (Sigl et al., 2021). 
    more » « less
  2. null (Ed.)
    Abstract. Volcanic eruptions are a key source of climatic variability, andreconstructing their past impact can improve our understanding of theoperation of the climate system and increase the accuracy of future climateprojections. Two annually resolved and independently dated palaeoarchives –tree rings and polar ice cores – can be used in tandem to assess thetiming, strength and climatic impact of volcanic eruptions over the past∼ 2500 years. The quantification of post-volcanic climateresponses, however, has at times been hampered by differences betweensimulated and observed temperature responses that raised questions regardingthe robustness of the chronologies of both archives. While manychronological mismatches have been resolved, the precise timing and climaticimpact of two major sulfate-emitting volcanic eruptions during the 1450s CE, including the largest atmospheric sulfate-loading event in the last 700 years, have not been constrained. Here we explore this issue through acombination of tephrochronological evidence and high-resolution ice-corechemistry measurements from a Greenland ice core, the TUNU2013 record. We identify tephra from the historically dated 1477 CE eruption of theIcelandic Veiðivötn–Bárðarbunga volcanic system in directassociation with a notable sulfate peak in TUNU2013 attributed to thisevent, confirming that this peak can be used as a reliable and precisetime marker. Using seasonal cycles in several chemical elements and 1477 CEas a fixed chronological point shows that ages of 1453 CE and 1458 CE can beattributed, with high precision, to the start of two other notablesulfate peaks. This confirms the accuracy of a recent Greenland ice-corechronology over the middle to late 15th century and corroborates thefindings of recent volcanic reconstructions from Greenland and Antarctica.Overall, this implies that large-scale Northern Hemisphere climatic coolingaffecting tree-ring growth in 1453 CE was caused by a Northern Hemispherevolcanic eruption in 1452 or early 1453 CE, and then a Southern Hemisphereeruption, previously assumed to have triggered the cooling, occurred laterin 1457 or 1458 CE. The direct attribution of the 1477 CE sulfate peak to the eruption ofVeiðivötn, one of the most explosive from Iceland in the last 1200 years, also provides the opportunity to assess the eruption's climaticimpact. A tree-ring-based reconstruction of Northern Hemisphere summertemperatures shows a cooling in the aftermath of the eruption of −0.35 ∘C relative to a 1961–1990 CE reference period and−0.1 ∘C relative to the 30-year period around the event, as well as arelatively weak and spatially incoherent climatic response in comparison tothe less explosive but longer-lasting Icelandic Eldgjá 939 CE and Laki1783 CE eruptions. In addition, the Veiðivötn 1477 CE eruptionoccurred around the inception of the Little Ice Age and could be used as achronostratigraphic marker to constrain the phasing and spatial variabilityof climate changes over this transition if it can be traced in moreregional palaeoclimatic archives. 
    more » « less
  3. Abstract. Paleoclimate archives, such as high-resolution ice core records, provide ameans to investigate past climate variability. Until recently, the Law Dome(Dome Summit South site) ice core record remained one of fewmillennial-length high-resolution coastal records in East Antarctica. A newice core drilled in 2017/2018 at Mount Brown South, approximately 1000 kmwest of Law Dome, provides an additional high-resolution record that willlikely span the last millennium in the Indian Ocean sector of EastAntarctica. Here, we compare snow accumulation rates and sea saltconcentrations in the upper portion (∼ 20 m) of three MountBrown South ice cores and an updated Law Dome record over the period1975–2016. Annual sea salt concentrations from the Mount Brown South siterecord preserve a stronger signal for the El Niño–Southern Oscillation(ENSO; austral winter and spring, r = 0.533, p < 0.001, Multivariate El Niño Index) compared to a previously defined Law Dome record of summer sea salt concentrations (November–February, r = 0.398, p = 0.010, SouthernOscillation Index). The Mount Brown South site record and Law Dome recordpreserve inverse signals for the ENSO, possibly due to longitudinalvariability in meridional transport in the southern Indian Ocean, althoughfurther analysis is needed to confirm this. We suggest that ENSO-related seasurface temperature anomalies in the equatorial Pacific drive atmosphericteleconnections in the southern mid-latitudes. These anomalies areassociated with a weakening (strengthening) of regional westerly winds tothe north of Mount Brown South that correspond to years of low (high) seasalt deposition at Mount Brown South during La Niña (El Niño)events. The extended Mount Brown South annual sea salt record (whencomplete) may offer a new proxy record for reconstructions of the ENSO overthe recent millennium, along with improved understanding of regionalatmospheric variability in the southern Indian Ocean, in addition to thatderived from Law Dome. 
    more » « less
  4. Abstract. The mid-17th century is characterized by a clusterof explosive volcanic eruptions in the 1630s and 1640s, climatic conditionsculminating in the Maunder Minimum, and political instability andfamine in regions of western and northern Europe as well as China and Japan. This contribution investigates the sources of the eruptions of the 1630s and 1640s and their possible impact on contemporary climate using ice core, tree-ring, and historical evidence but will also look into thesocio-political context in which they occurred and the human responses theymay have triggered. Three distinct sulfur peaks are found in the Greenlandice core record in 1637, 1641–1642, and 1646. In Antarctica, only oneunambiguous sulfate spike is recorded, peaking in 1642. The resultingbipolar sulfur peak in 1641–1642 can likely be ascribed to the eruption ofMount Parker (6∘ N, Philippines) on 26 December 1640, but sulfateemitted from Komaga-take (42∘ N, Japan) volcano on 31 July 1641has potentially also contributed to the sulfate concentrations observed inGreenland at this time. The smaller peaks in 1637 and 1646 can bepotentially attributed to the eruptions of Hekla (63∘ N, Iceland)and Shiveluch (56∘ N, Russia), respectively. To date, however,none of the candidate volcanoes for the mid-17th century sulfate peakshave been confirmed with tephra preserved in ice cores. Tree-ring andwritten sources point to cold conditions in the late 1630s and early 1640sin various parts of Europe and to poor harvests. Yet the early 17thcentury was also characterized by widespread warfare across Europe – and in particular the Thirty Years' War (1618–1648) – rendering any attribution of socio-economic crisis to volcanism challenging. In China and Japan, historical sources point to extreme droughts and famines starting in 1638 (China) and 1640 (Japan), thereby preceding the eruptions of Komaga-take (31 July 1640) and Mount Parker (4 January 1641). The case of the eruptioncluster between 1637 and 1646 and the climatic and societal conditionsrecorded in its aftermath thus offer a textbook example of difficulties in(i) unambiguously distinguishing volcanically induced cooling, wetting, ordrying from natural climate variability and (ii) attributing politicalinstability, harvest failure, and famines solely to volcanic climaticimpacts. This example shows that while the impacts of past volcanism mustalways be studied within the contemporary socio-economic contexts, it isalso time to move past reductive framings and sometimes reactionaryoppositional stances in which climate (and environment more broadly) eitheris or is not deemed an important contributor to major historical events. 
    more » « less
  5. null (Ed.)
    Abstract. The last glacial period is characterized by a number of millennial climateevents that have been identified in both Greenland and Antarctic ice coresand that are abrupt in Greenland climate records. The mechanisms governingthis climate variability remain a puzzle that requires a precisesynchronization of ice cores from the two hemispheres to be resolved.Previously, Greenland and Antarctic ice cores have been synchronizedprimarily via their common records of gas concentrations or isotopes fromthe trapped air and via cosmogenic isotopes measured on the ice. In thiswork, we apply ice core volcanic proxies and annual layer counting toidentify large volcanic eruptions that have left a signature in bothGreenland and Antarctica. Generally, no tephra is associated with thoseeruptions in the ice cores, so the source of the eruptions cannot beidentified. Instead, we identify and match sequences of volcanic eruptionswith bipolar distribution of sulfate, i.e. unique patterns of volcanicevents separated by the same number of years at the two poles. Using thisapproach, we pinpoint 82 large bipolar volcanic eruptions throughout thesecond half of the last glacial period (12–60 ka). Thisimproved ice core synchronization is applied to determine the bipolarphasing of abrupt climate change events at decadal-scale precision. Inresponse to Greenland abrupt climatic transitions, we find a response in theAntarctic water isotope signals (δ18O and deuterium excess)that is both more immediate and more abrupt than that found with previousgas-based interpolar synchronizations, providing additional support for ourvolcanic framework. On average, the Antarctic bipolar seesaw climateresponse lags the midpoint of Greenland abrupt δ18O transitionsby 122±24 years. The time difference between Antarctic signals indeuterium excess and δ18O, which likewise informs the timeneeded to propagate the signal as described by the theory of the bipolarseesaw but is less sensitive to synchronization errors, suggests anAntarctic δ18O lag behind Greenland of 152±37 years.These estimates are shorter than the 200 years suggested by earliergas-based synchronizations. As before, we find variations in the timing andduration between the response at different sites and for different eventssuggesting an interaction of oceanic and atmospheric teleconnection patternsas well as internal climate variability. 
    more » « less