skip to main content


Title: Spatial and temporal scales of exposure and sensitivity drive mortality risk patterns across life stages
Abstract

Impacts of increases in extreme heat events under climate change may differ across ontogeny for species with complex life cycles. Different life stages may (1) experience unequal levels of environmental stress that vary across space and time (exposure) and (2) have different stress tolerances (sensitivity). We used a field experiment to investigate whether exposure, sensitivity, and overall mortality risk differed between life stages of a marine foundation species (the musselMytilus californianus) across thermal conditions that vary in space (habitat, elevation, and site) and time (season) in southern California, USA. We deployed temperature loggers to document habitat‐specific exposure patterns, conducted laboratory thermal tolerance assays to calculate sensitivity, and performed field surveys to determine whether risk patterns were reflected in distributions. Exposure to extreme temperatures was highest in solitary habitats and during spring. Juvenile mussels were more sensitive to extreme heat than adults, and sensitivity for both life stages was highest in December and March. Risk was largely seasonal for juveniles but was more temporally variable for adults. Spatial occurrence patterns were congruent with risk assessments for both life stages (i.e., higher occurrence in lower risk habitats). These results highlight the importance of incorporating life stage and temporal dynamics when predicting impacts of climate change.

 
more » « less
PAR ID:
10448335
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
12
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anticipating the next generation of forests requires understanding of recruitment responses to habitat change. Tree distribution and abundance depend not only on climate, but also on habitat variables, such as soils and drainage, and on competition beneath a shaded canopy. Recent analyses show that North American tree species are migrating in response to climate change, which is exposing each population to novel climate-habitat interactions (CHI). Because CHI have not been estimated for either adult trees or regeneration (recruits per year per adult basal area), we cannot evaluate migration potential into the future. Using the Masting Inference and Forecasting (MASTIF) network of tree fecundity and new continent-wide observations of tree recruitment, we quantify impacts for redistribution across life stages from adults to fecundity to recruitment. We jointly modeled response of adult abundance and recruitment rate to climate/habitat conditions, combined with fecundity sensitivity, to evaluate if shifting CHI explain community reorganization. To compare climate effects with tree fecundity, which is estimated from trees and thus is "conditional" on tree presence, we demonstrate how to quantify this conditional status for regeneration. We found that fecundity was regulated by temperature to a greater degree than other stages, yet exhibited limited responses to moisture deficit. Recruitment rate expressed strong sensitivities to CHI, more like adults than fecundity, but still with substantial differences. Communities reorganized from adults to fecundity, but there was a re-coalescence of groups as seedling recruitment partially reverted to community structure similar to that of adults. Results provide the first estimates of continent-wide community sensitivity and their implications for reorganization across three life-history stages under climate change. 
    more » « less
  2. Climate change poses a threat to organisms across the world, with cold-adapted species such as bumble bees (Bombus spp.) at particularly high risk. Understanding how organisms respond to extreme heat events associated with climate change as well as the factors that increase resilience or prime organisms for future stress can inform conservation actions. We investigated the effects of heat stress within different contexts (duration, periodicity, with and without access to food, and in the laboratory versus field) on bumble bee (Bombus impatiens) survival and heat tolerance. We found that both prolonged (5 h) heat stress and nutrition limitation were negatively correlated with worker bee survival and thermal tolerance. However, the effects of these acute stressors were not long lasting (no difference in thermal tolerance among treatment groups after 24 h). Additionally, intermittent heat stress, which more closely simulates the forager behavior of leaving and returning to the nest, was not negatively correlated with worker thermal tolerance. Thus, short respites may allow foragers to recover from thermal stress. Moreover, these results suggest there is no priming effect resulting from short- or long-duration exposure to heat – bees remained equally sensitive to heat in subsequent exposures. In field-caught bumble bees, foragers collected during warmer versus cooler conditions exhibited similar thermal tolerance after being allowed to recover in the lab for 16 h. These studies offer insight into the impacts of a key bumble bee stressor and highlight the importance of recovery duration, stressor periodicity and context on bumble bee thermal tolerance outcomes. 
    more » « less
  3. ABSTRACT Organisms with complex life cycles demonstrate a remarkable ability to change their phenotypes across development, presumably as an evolutionary adaptation to developmentally variable environments. Developmental variation in environmentally sensitive performance, and thermal sensitivity in particular, has been well documented in holometabolous insects. For example, thermal performance in adults and juvenile stages exhibit little genetic correlation (genetic decoupling) and can evolve independently, resulting in divergent thermal responses. Yet, we understand very little about how this genetic decoupling occurs. We tested the hypothesis that genetic decoupling of thermal physiology is driven by fundamental differences in physiology between life stages, despite a potentially conserved cellular stress response. We used RNAseq to compare transcript expression in response to a cold stressor in Drosophila melanogaster larvae and adults and used RNA interference (RNAi) to test whether knocking down nine target genes differentially affected larval and adult cold tolerance. Transcriptomic responses of whole larvae and adults during and following exposure to −5°C were largely unique both in identity of responding transcripts and in temporal dynamics. Further, we analyzed the tissue-specificity of differentially expressed transcripts from FlyAtlas 2 data, and concluded that stage-specific differences in transcription were not simply driven by differences in tissue composition. In addition, RNAi of target genes resulted in largely stage-specific and sometimes sex-specific effects on cold tolerance. The combined evidence suggests that thermal physiology is largely stage-specific at the level of gene expression, and thus natural selection may be acting on different loci during the independent thermal adaptation of different life stages. 
    more » « less
  4. Abstract The risks associated with extreme heat are increasing as heat waves become more frequent and severe across larger areas. As people begin to experience heat waves more often and in more places, how will individuals respond? Measuring experience with heat simply as exposure to extreme temperatures may not fully capture how people subjectively experience those temperatures or their varied impacts on human health. These impacts may also influence an individual’s response to heat and motivate risk-reduction behaviors. If subjectively experiencing negative health effects from extreme heat promotes protective actions, these effects could be used alongside temperature exposure to more accurately measure extreme heat experience and inform risk prevention and communication strategies according to local community needs. Using a multilevel regression model, this study analyzes georeferenced national survey data to assess whether Americans’ exposure to extreme heat and experience with its health effects are associated with self-reported protective behaviors. Subjective experience with heat-related health symptoms strongly predicted all reported protective behaviors while measured heat exposure had a much weaker influence. Risk perception was strongly associated with some behaviors. This study focuses particularly on the practice of checking on family, friends, and neighbors during a heat wave, which can be carried out by many people. For this behavior, age, race/ethnicity, gender, and income, along with subjective experience and risk perception, were important predictors. Results suggest that the subjective experience of extreme heat influences health-related behavioral responses and should therefore be considered when designing or improving local heat protection plans. 
    more » « less
  5. Abstract

    Many cities are experiencing increases in extreme heat because of global temperature rise combined with the urban heat island effect. The heterogeneity of urban morphology also leads to fine-scale variability in potential for heat exposure. Yet, how this rise in temperature and local variability together impacts urban residents differently at exposure-relevant scales is still not clear. Here we map the Universal Thermal Climate Index, a more complete indicator of human heat stress at an unprecedentedly fine spatial resolution (1 m), for 14 major cities in the United States using urban microclimate modeling. We examined the different heat exposure levels across different socioeconomic and racial/ethnic groups in these cities, finding that income level is most consistently associated with heat stress. We further conducted scenario simulations for a hypothetical 1 °C increase of air temperature in all cities. Results show that a 1 °C increase would have a substantial impact on human heat stress, with impacts that differ across cities. The results of this study can help us better evaluate the impact of extreme heat on urban residents at decision-relevant scales.

     
    more » « less