skip to main content

Title: Recent Trends in the Waviness of the Northern Hemisphere Wintertime Polar and Subtropical Jets

A feature‐based metric of the waviness of the wintertime, Northern Hemisphere polar, and subtropical jets is developed and applied to three different reanalysis data sets. The analysis first identifies a “core isertel” along which the circulation per unit length is maximized in the separate polar (315:330K) and subtropical (340:355K) jet isentropic layers. Since the core isertel is, by design, an analytical proxy for the respective jet cores, the waviness of each jet is derived by calculating a hemispheric average of the meridional displacements of the core isertel from its equivalent latitude—the southern extent of a polar cap whose area is equal to the area enclosed by the core isertel. Analysis of the seasonal average waviness over the time series of the various data sets reveals that both jets have become systematically wavier while exhibiting no trends in their average speeds. The waviness of each jet evolves fairly independently of the other in most cold seasons and the slow northward creep of the polar jet is statistically significant. Finally, comparison of the composites of the waviest and least wavy seasons for each species reveals that such interannual variability is manifest in familiar large‐scale circulation anomalies.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets. 
    more » « less
  2. Abstract

    While a large latitudinal displacement of the westerly jet brings about disproportionate socioeconomic impacts over Northern Hemisphere midlatitude continents, it is not well understood as to whether the winter circulation will become wavier or less in response to climate change. Here, using observations and large ensembles of climate models, we show that changes in atmospheric waviness can be estimated from the optimal structures of the westerly jet for wavier circulation, which are obtained from an advection‐diffusion model. Thus, the changes in westerly jet structure in climate models under climate change provide a physical constraint on changes in atmospheric waviness, indicating that the North Atlantic wave activity will experience a robust decline in a warmer climate, while future North Pacific wave activity is obscured by model uncertainty rather than internal variability. These findings highlight the changes to jet stream structure as a constraint for regional circulation waviness in a changing climate.

    more » « less
  3. null (Ed.)
    Abstract A polar–subtropical jet superposition represents a dynamical and thermodynamic environment conducive to the production of high-impact weather. Prior work indicates that the synoptic-scale environments that support the development of North American jet superpositions vary depending on the case under consideration. This variability motivates an analysis of the range of synoptic–dynamic mechanisms that operate within a double-jet environment to produce North American jet superpositions. This study identifies North American jet superposition events during November–March 1979–2010 and subsequently classifies those events into three characteristic event types. “Polar dominant” events are those during which only the polar jet is characterized by a substantial excursion from its climatological latitude band, “subtropical dominant” events are those during which only the subtropical jet is characterized by a substantial excursion from its climatological latitude band, and “hybrid” events are those characterized by a mutual excursion of both jets from their respective climatological latitude bands. The analysis indicates that North American jet superposition events occur most often during November and December, and subtropical dominant events are the most frequent event type for all months considered. Composite analyses constructed for each event type reveal the consistent role that descent plays in restructuring the tropopause beneath the jet-entrance region prior to jet superposition. The composite analyses further show that surface cyclogenesis and widespread precipitation lead the development of subtropical dominant events and contribute to jet superposition via their associated divergent circulations and diabatic heating, whereas surface cyclogenesis and widespread precipitation tend to peak at the time of superposition and well downstream of polar dominant events. 
    more » « less
  4. Abstract

    Vertical alignment of the polar and subtropical jet streams in the west Pacific basin occurs most often during the boreal cold season. Recent work has revealed that the large-scale environment conducive to producing such superpositions involves interaction between East Asian winter monsoon cold-surge events, lower-latitude convection, and internal jet dynamics. The evolution of the large-scale environments associated with these events post-superposition as well as the significance of that evolution on aspects of the wintertime Northern Hemisphere general circulation is examined through construction of a 44-case composite. The post-superposition west Pacific jet extends eastward associated with an anomalous positive–negative geopotential height couplet straddling the jet’s exit region. This jet extension results in ridge building over Alaska and northwestern Canada. The large-scale evolutions associated with the composite post-superposition environment occur consistently among the majority of cases considered within this analysis. The positive–negative geopotential height anomaly couplet, enhanced jet entrance circulation, low-latitude convection, and internal jet dynamics present in the pre-superposition environment weaken post-superposition. As a result, the characteristic vertical PV “wall” associated with the composite vertically superposed jet weakens. Last, investigation of the value of using the two most dominant modes of west Pacific jet variability in observing the evolution of the superposed west Pacific jet post-superposition reveals that, while the extension of the jet is exhibited, significant variability exists when analyzing each of the 44 cases of interest individually.

    more » « less
  5. null (Ed.)
    Abstract A polar–subtropical jet superposition is preceded by the development of a polar cyclonic potential vorticity (PV) anomaly at high latitudes and a tropical anticyclonic PV anomaly at subtropical latitudes. A confluent large-scale flow pattern can lead to the juxtaposition of these respective PV anomalies at middle latitudes, resulting in the addition of the nondivergent circulations induced by each PV anomaly and an increase in upper-tropospheric wind speeds at the location of jet superposition. Once these PV anomalies become juxtaposed, vertical motion within the near-jet environment facilitates the advection and diabatic redistribution of tropopause-level PV, and the subsequent formation of the steep, single-step tropopause structure that characterizes a jet superposition. Given the importance of vertical motion during the formation of jet superpositions, this study adopts a quasigeostrophic (QG) diagnostic approach to quantify the production of vertical motion during three types of jet superposition events: polar dominant, eastern subtropical dominant, and western subtropical dominant. The diagnosis reveals that the geostrophic wind induced by polar cyclonic QGPV anomalies is predominantly responsible for QG vertical motion in the vicinity of jet superpositions. The QG vertical motion diagnosed from the along-isotherm component of the Q vector, which represents the vertical motion associated with synoptic-scale waves, is dominant within the near-jet environment. The QG vertical motion diagnosed from the across-isotherm component of the Q vector, which represents the vertical motion associated with frontal circulations in the vicinity of the jet, is subordinate within the near-jet environment, but is relatively more important during eastern subtropical dominant events compared to polar dominant and western subtropical dominant events. 
    more » « less