skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Edge‐Mediated Annihilation of Vacancy Clusters in Monolayer Molybdenum Diselenide (MoSe 2 ) under Electron Beam Irradiation
Abstract

Annihilation of vacancy clusters in monolayer molybdenum diselenide (MoSe2) under electron beam irradiation is reported. In situ high‐resolution transmission electron microscopy observation reveals that the annihilation is achieved by diffusion of vacancies to the free edge near the vacancy clusters. Monte Carlo simulations confirm that it is energetically favorable for the vacancies to locate at the free edge. By computing the minimum energy path for the annihilation of one vacancy cluster as a case study, it is further shown that electron beam irradiation and pre‐stress in the suspended MoSe2monolayer are necessary for the vacancies to overcome the energy barriers for diffusion. The findings suggest a new mechanism of vacancy healing in 2D materials and broaden the capability of electron beam for defect engineering of 2D materials, a promising way of tuning their properties for engineering applications.

 
more » « less
NSF-PAR ID:
10448396
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
18
Issue:
1
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Annihilation of vacancy clusters in monolayer molybdenum diselenide (MoSe2) under electron beam irradiation is reported. In situ high-resolution transmission electron microscopy observation reveals that the annihilation is achieved by diffusion of vacancies to the free edge near the vacancy clusters. Monte Carlo simulations confirm that it is energetically favorable for the vacancies to locate at the free edge. By computing the minimum energy path for the annihilation of one vacancy cluster as a case study, it is further shown that electron beam irradiation and pre-stress in the suspended MoSe2 monolayer are necessary for the vacancies to overcome the energy barriers for diffusion. The findings suggest a new mechanism of vacancy healing in 2D materials and broaden the capability of electron beam for defect engineering of 2D materials, a promising way of tuning their properties for engineering applications. 
    more » « less
  2. Abstract

    Monolayer molybdenum disulfide has been previously discovered to exhibit non-volatile resistive switching behavior in a vertical metal-insulator-metal structure, featuring ultra-thin sub-nanometer active layer thickness. However, the reliability of these nascent 2D-based memory devices was not previously investigated for practical applications. Here, we employ an electron irradiation treatment on monolayer MoS2film to modify the defect properties. Raman, photoluminescence, and X-ray photoelectron spectroscopy measurements have been performed to confirm the increasing amount of sulfur vacancies introduced by the e-beam irradiation process. The statistical electrical studies reveal the reliability can be improved by up to 1.5× for yield and 11× for average DC cycling endurance in the devices with a moderate radiation dose compared to unirradiated devices. Based on our previously proposed virtual conductive-point model with the metal ion substitution into sulfur vacancy, Monte Carlo simulations have been performed to illustrate the irradiation effect on device reliability, elucidating a clustering failure mechanism. This work provides an approach by electron irradiation to enhance the reliability of 2D memory devices and inspires further research in defect engineering to precisely control the switching properties for a wide range of applications from memory computing to radio-frequency switches.

     
    more » « less
  3. Abstract

    The ability to modulate optical and electrical properties of two-dimensional (2D) semiconductors has sparked considerable interest in transition metal dichalcogenides (TMDs). Herein, we introduce a facile strategy for modulating optoelectronic properties of monolayer MoSe2with external light. Photochromic diarylethene (DAE) molecules formed a 2-nm-thick uniform layer on MoSe2, switching between its closed- and open-form isomers under UV and visible irradiation, respectively. We have discovered that the closed DAE conformation under UV has its lowest unoccupied molecular orbital energy level lower than the conduction band minimum of MoSe2, which facilitates photoinduced charge separation at the hybrid interface and quenches photoluminescence (PL) from monolayer flakes. In contrast, open isomers under visible light prevent photoexcited electron transfer from MoSe2to DAE, thus retaining PL emission properties. Alternating UV and visible light repeatedly show a dynamic modulation of optoelectronic signatures of MoSe2. Conductive atomic force microscopy and Kelvin probe force microscopy also reveal an increase in conductivity and work function of MoSe2/DAE with photoswitched closed-form DAE. These results may open new opportunities for designing new phototransistors and other 2D optoelectronic devices.

     
    more » « less
  4. Abstract

    Controlled fabrication of nanopores in 2D materials offer the means to create robust membranes needed for ion transport and nanofiltration. Techniques for creating nanopores have relied upon either plasma etching or direct irradiation; however, aberration‐corrected scanning transmission electron microscopy (STEM) offers the advantage of combining a sub‐Å sized electron beam for atomic manipulation along with atomic resolution imaging. Here, a method for automated nanopore fabrication is utilized with real‐time atomic visualization to enhance the mechanistic understanding of beam‐induced transformations. Additionally, an electron beam simulation technique, Electron‐Beam Simulator (E‐BeamSim) is developed to observe the atomic movements and interactions resulting from electron beam irradiation. Using the MXene Ti3C2Tx, the influence of temperature on nanopore fabrication is explored by tracking atomic transformations and find that at room temperature the electron beam irradiation induces random displacement and results in titanium pileups at the nanopore edge, which is confirmed by E‐BeamSim. At elevated temperatures, after removal of the surface functional groups and with the increased mobility of atoms results in atomic transformations that lead to the selective removal of atoms layer by layer. This work can lead to the development of defect engineering techniques within functionalized MXene layers and other 2D materials.

     
    more » « less
  5. Abstract

    Edges and point defects in layered dichalcogenides are important for tuning their electronic and magnetic properties. By combining scanning tunneling microscopy (STM) with density functional theory (DFT), the electronic structure of edges and point defects in 2D‐PtSe2are investigated where the 1.8 eV bandgap of monolayer PtSe2facilitates the detailed characterization of defect‐induced gap states by STM. The stoichiometric zigzag edge terminations are found to be energetically favored. STM and DFT show that these edges exhibit metallic 1D states with spin polarized bands. Various native point defects in PtSe2are also characterized by STM. A comparison of the experiment with simulated images enables identification of Se‐vacancies, Pt‐vacancies, and Se‐antisites as the dominant defects in PtSe2. In contrast to Se‐ or Pt‐vacancies, the Se‐antisites are almost devoid of gap states. Pt‐vacancies exhibit defect induced states that are spin polarized, emphasizing their importance for inducing magnetism in PtSe2. The atomic‐scale insights into defect‐induced electronic states in monolayer PtSe2provide the fundamental underpinning for defect engineering of PtSe2‐monolayers and the newly identified spin‐polarized edge states offer prospects for engineering magnetic properties in PtSe2nanoribbons.

     
    more » « less