Dietary ecology and its relationship with both muscle architecture and bite force potential has been studied in many mammalian (and non‐mammalian) taxa. However, despite the diversity of dietary niches that characterizes the superfamily Musteloidea, the masticatory muscle fiber architecture of its members has yet to be investigated anatomically. In this study, we present myological data from the jaw adductors in combination with biomechanical data derived from craniomandibular measurements for 17 species representing all four families (Ailuridae, Mephitidae, Mustelidae, and Procyonidae) of Musteloid. These data are combined to calculate bite force potential at each of three bite points along the dental row. Across our sample as a whole, masticatory muscle mass scaled with isometry or slight positive allometry against both body mass and skull size (measured via a cranial geometric mean). Total jaw adductor physiological cross‐sectional area scaled with positive allometry against both body mass and skull size, while weighted fiber length scaled with negative allometry. From a dietary perspective, fiber length is strongly correlated with dietary size such that taxa that exploit larger foods demonstrated myological adaptations toward gape maximization. However, no consistent relationship between bite force potential and dietary mechanical resistance was observed. These trends confirm previous findings observed within the carnivoran family Felidae (as well as within primates), suggesting that the mechanisms by which masticatory anatomy adapts to dietary ecology may be more universally consistent than previously recognized. Anat Rec, 302:2287–2299, 2019. © 2019 American Association for Anatomy
Carnivorans represent extreme ecomorphological diversity, encompassing remarkable variation in form, habitat, and diet. The relationship between the masticatory musculature and dietary ecology has been explored in a number of carnivoran lineages, including felids and the superfamily Musteloidea. In this study, we present novel architectural data on two additional carnivoran families—Ursidae and Canidae—and supplement these previous studies with additional felid, musteloid, herpestid, hyaenid, and viverrid taxa (a total of 53 species across 10 families). Gross dissection data were collected following a standardized protocol—sharp dissection followed by chemical digestion. Summed jaw adductor forces were also transformed into bite force estimates (BF) using osteologically calculated leverages. All data were linearized, log‐transformed, and size‐adjusted using two proxies for each taxon—body mass (BM) and cranial geometric mean—to assess relative scaling trends. These architectural data were then analyzed in the context of dietary ecology to examine the impact of dietary size (DS) and dietary mechanical properties (DMP). Muscle mass, physiological cross‐sectional area, and BF scaled with isometry or positive allometry in all cases, whereas fascicle lengths (FLs) scaled with isometry or negative allometry. With respect to diet, BM‐adjusted FLs were strongly correlated with DS in musteloids, but not in any other lineage. The relationship between size‐adjusted BF and DMP was also significant within musteloids, and across the sample as a whole, but not within other individual lineages. This interfamilial trend may reflect the increased morphological and dietary diversity of musteloids relative to other carnivoran groups.
more » « less- PAR ID:
- 10448413
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- The Anatomical Record
- Volume:
- 305
- Issue:
- 2
- ISSN:
- 1932-8486
- Page Range / eLocation ID:
- p. 477-497
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract Echolocation is the primary sense used by most bats to navigate their environment. However, the influence of echolocating behaviors upon the morphology of the auditory apparatus remains largely uninvestigated. While it is known that middle ear ossicle size scales positively with body mass across mammals, and that peak call frequency scales negatively with body mass among bats, there are still large gaps in our understanding of the degree to which allometry or ecology influences the morphology of the chiropteran auditory apparatus. To investigate this, we used μCT datasets to quantify three morphological components of the inner and middle ear: ossicle size, ossicle shape, and cochlear spirality. These data were collected across 27 phyllostomid species, spanning a broad range of body sizes, habitats, and dietary categories, and the relationships between these variables and ear morphology were assessed using a comparative phylogenetic approach. Ossicle size consistently scaled with strong negative allometry relative to body mass. Cochlear spirality was significantly (
p = .025) associated with wing aspect ratio (a proxy for habitat use) but was not associated with body mass. From a morphological perspective, the malleus and incus exhibited some variation in kind with diet and call frequency, while stapes morphology is more closely tied to body size. Future work will assess these relationships within other chiropteran lineages, and investigate potential morphological differences in the middle and inner ear of echolocating‐vs‐non‐echolocating taxa. -
ABSTRACT By combining muscle architectural data with biomechanical variables relating to the jaw, we produce anatomically derived maximum bite force estimations for 23 species of catarrhine and platyrrhine primates. We investigate how bite force scales across the sample as a whole (and within each parvorder) relative to two size proxies, body mass and cranial geometric mean, and the effect of diet upon bite force. Bite force is estimated at three representative bite points along the dental row: the first maxillary incisor, canine, and third‐most mesial paracone. We modeled bite force by combining calculated physiological cross‐sectional area of the jaw adductors from Hartstone‐Rose et al. [Anat Rec 301 (2018) 311–324] with osteological measurements of lever‐ and load‐arm lengths from the same specimens [Hartstone‐Rose et al., Anat Rec 295 (2012) 1336–1351]. Bite force scales with positive allometry relative to cranial geometric mean across our entire sample and tends toward positive allometry relative to body mass. Bite force tends toward positive allometry within platyrrhines but scales isometrically within catarrhines. There was no statistically significant scaling difference with diet. Our findings imply an absence of a dietary signal in the scaling of bite force, a result that differs from the scaling of physiological cross‐sectional area alone. That is, although previous studies have found a dietary signal in the muscle fiber architecture in these species, when these are combined with their leverages, that signal is undetectable. On the parvorder level, our data also demonstrate that the platyrrhine masticatory system appears more mechanically advantageous than that of catarrhines. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:2026–2035, 2020. © 2019 American Association for Anatomy
-
Abstract Measures of reproductive output in turtles are generally positively correlated with female body size. However, a full understanding of reproductive allometry in turtles requires logarithmic transformation of reproductive and body size variables prior to regression analyses. This allows for slope comparisons with expected linear or cubic relationships for linear to linear and linear to volumetric variables, respectively. We compiled scaling data using this approach from published and unpublished turtle studies (46 populations of 25 species from eight families) to quantify patterns among taxa. Our results suggest that for log–log comparisons of clutch size, egg width, egg mass, clutch mass, and pelvic aperture width to shell length, all scale hypoallometrically despite theoretical predictions of isometry. Clutch size generally scaled at ~1.7 to 2.0 (compared to an isometric expectation of 3.0), egg width at ~0.5 (compared to an expectation of 1.0), egg mass at ~1.1 to 1.3 (3.0), clutch mass at ~2.5 to 2.8 (3.0), and pelvic aperture width at 0.8–0.9 (1.0). We also found preliminary evidence that scaling may differ across years and clutches even in the same population, as well as across populations of the same species. Future investigators should aspire to collect data on all these reproductive parameters and to report log–log allometric analyses to test our preliminary conclusions regarding reproductive allometry in turtles.
-
Traits for prey acquisition form the phenotypic interface of predator–prey interactions. In venomous predators, morphological variation in venom delivery apparatus like fangs and stingers may be optimized for dispatching prey. Here, we determine how a single dimension of venom injection systems evolves in response to variation in the size, climatic conditions and dietary ecology of viperid snakes. We measured fang length in more than 1900 museum specimens representing 199 viper species (55% of recognized species). We find both phylogenetic signal and within-clade variation in relative fang length across vipers suggesting both general taxonomic trends and potential adaptive divergence in fang length. We recover positive evolutionary allometry and little static allometry in fang length. Proportionally longer fangs have evolved in larger species, which may facilitate venom injection in more voluminous prey. Finally, we leverage climatic and diet data to assess the global correlates of fang length. We find that models of fang length evolution are improved through the inclusion of both temperature and diet, particularly the extent to which diets are mammal-heavy diets. These findings demonstrate how adaptive variation can emerge among components of complex prey capture systems.more » « less