Abstract Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have important consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed‐dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen‐based defensive compounds common in fruits of the neotropical plant genusPiper(Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts toPiperfruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of ants redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants.
more »
« less
Dispersers and environment drive global variation in fruit colour syndromes
Abstract The colours of fleshy fruits play a critical role in plant dispersal by advertising ripe fruits to consumers. Fruit colours have long been classified into syndromes attributed to selection by animal dispersers, despite weak evidence for this hypothesis. Here, we test the relative importance of biotic (bird and mammal frugivory) and abiotic (wet season temperatures, growing season length and UV‐B radiation) factors in determining fruit colour syndrome in 3163 species of fleshy‐fruited plants. We find that both dispersers and environment are important, and they interact. In warm areas, contrastive, bird‐associated fruit colours increase withrelative bird frugivore prevalence, whereas in cold places these colours dominate even where mammalian dispersers are prevalent. We present near‐global maps of predicted fruit colour syndrome based on our species‐level model and our newly developed characterisations of relative importance of bird and mammal frugivores.
more »
« less
- Award ID(s):
- 1907293
- PAR ID:
- 10448417
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 24
- Issue:
- 7
- ISSN:
- 1461-023X
- Page Range / eLocation ID:
- p. 1387-1399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract PremiseThe scents of volatile organic compounds (VOCs) are an important component of ripe fleshy fruit attractiveness, yet their variation across closely related wild species is poorly understood. Phylogenetic patterns in these compounds and their biosynthetic pathways offer insight into the evolutionary drivers of fruit diversity, including whether scent can communicate an honest signal of nutrient content to animal dispersers. We assessed ripe fruit VOC content across the tomato clade (Solanumsect.Lycopersicon), with implications for crop improvement since these compounds are key components of tomato flavor. MethodsWe analyzed ripe fruit volatiles from 13 species of wild tomato grown in a common garden. Interspecific variations in 66 compounds and their biosynthetic pathways were assessed in 32 accessions, and an accession‐level phylogeny was constructed to account for relatedness. ResultsWild tomato species can be differentiated by their VOCs, withSolanum pennelliinotably distinct. Phylogenetic conservatism exists to a limited extent. Major cladewide patterns corresponded to divergence of the five brightly colored‐fruited species from the nine green‐fruited species, particularly for nitrogen‐containing compounds (higher in colored‐fruited) and esters (higher in green‐fruited), the latter appearing to signal a sugar reward. ConclusionsWe established a framework for fruit scent evolution studies in a crop wild relative system, showing that each species in the tomato clade has a unique VOC profile. Differences between color groups align with fruit syndromes that could be driven by selection from frugivores. The evolution of colored fruits was accompanied by changes in biosynthetic pathways for esters and nitrogen‐containing compounds, volatiles important to tomato flavor.more » « less
-
Abstract This study investigated ant seed removal ofPiper sancti‐felicis,an early successional Neotropical shrub. NeotropicalPiperare a classic example of bat‐dispersed plants, but we suggest that ants are underappreciated dispersal agents. We identified eleven ant species from the generaAphaenogaster,Ectatomma,Paratrechina,Pheidole,Trachymyrmex, andWasmanniarecruiting to and harvestingP. sancti‐felicisseeds in forest edge and secondary forest sites at La Selva, Costa Rica. We also tested for differences in ant recruitment to five states in which ants can commonly encounter seeds: unripe fruit, ripe fruit, overripe fruit, bat feces, and cleaned seeds. Overall, ants harvested more seeds from ripe and overripe fruits than other states, but this varied among species. To better understand the mechanisms behind ant preferences for ripe/overripe fruit, we also studied how alkenylphenols, secondary metabolites found in high concentrations inP. sancti‐felicisfruits, affected foraging behavior in one genus of potential ant dispersers,Ectatomma. We found no effects of alkenylphenols on recruitment ofEctatommato fruits, and thus, these compounds are unlikely to explain differences in ant recruitment among fruits of different maturity. Considering thatP. sancti‐felicisseeds have no apparent adaptations for ant dispersal, and few ants removed seeds that were cleaned of pulp, we hypothesize that most ants are harvesting its seeds for the nutritional rewards in the attached pulp. This study emphasizes the importance of ants as important additional dispersers ofP. sancti‐felicisand suggests that other non‐myrmecochorous, vertebrate‐dispersed plants may similarly benefit from the recruitment to fruit by ants.more » « less
-
Abstract AimAre different fruit colours related to large‐scale patterns of dispersal, distribution and diversification? Here, we investigate this question for the first time, using phylogenetic approaches in the tribe Gaultherieae (Ericaceae). We test relationships between fruit colour and (a) biogeographic dispersal, (b) elevational and latitudinal species distributions and (c) rates of diversification. LocationGlobal. Time periodRecent to 30 million years ago. Major taxa studiedThe plant tribe Gaultherieae in the family Ericaceae (blueberries and relatives). MethodsWe estimated a new time‐calibrated phylogeny for Gaultherieae. Data on fruit colours and geographic distributions for each species were compiled from published sources and field observations. Using phylogenetic methods, we estimated major dispersal events across the tree and the most likely fruit colour associated with each dispersal event, and tested whether dispersal between major biogeographic regions was equally likely for different fruit colours, and whether dispersal distances were larger for certain colours. We then tested the relationships between fruit colours and geographic variables (latitude, elevation) and diversification rates. ResultsLarge‐scale dispersal events were significantly associated with red‐fruited lineages, even though red‐fruited species were relatively uncommon. Further, different fruit colours were associated with different elevations and latitudes (e.g. red at lower elevations, violet at lower latitudes, white at higher elevations). Violet colour was related to increased diversification rates, leading to more violet‐fruited species globally. Main conclusionsOverall, we show that different fruit colours can significantly impact the large‐scale dispersal, distribution and diversification of plant clades. Furthermore, the interplay between biogeography and fruit‐colour evolution seems to generate “taxon cycles” in fruit colour that may drive variation in fruit colour over macroevolutionary time‐scales.more » « less
-
Plant secondary metabolites are key mechanistic drivers of species interactions. These metabolites have primarily been studied for their role in defense, but they can also have complex consequences for mutualisms, including seed dispersal. Although the primary function of fleshy fruits is to attract seed-dispersing animals, fruits often contain complex mixtures of toxic or deterrent secondary metabolites that can reduce the quantity or quality of seed dispersal mutualisms. Furthermore, because seeds are often dispersed across multiple stages by several dispersers, the net consequences of fruit secondary metabolites for the effectiveness of seed dispersal and ultimately plant fitness are poorly understood. Here, we tested the effects of amides, nitrogen-based defensive compounds common in fruits of the neotropical plant genus Piper (Piperaceae), on seed dispersal effectiveness (SDE) by ants, which are common secondary seed dispersers. We experimentally added amide extracts to Piper fruits both in the field and lab, finding that amides reduced the quantity of secondary seed dispersal by reducing ant recruitment (87%) and fruit removal rates (58% and 66% in the field and lab, respectively). Moreover, amides not only reduced dispersal quantity but also altered seed dispersal quality by shifting the community composition of recruiting ants (notably by reducing the recruitment of the most effective disperser by 90% but having no detectable effect on the recruitment of a cheater species that removes fruit pulp without dispersing seeds). Although amides did not affect the distance ants initially carried seeds, they altered the quality of seed dispersal by reducing the likelihood of ants cleaning seeds (67%) and increasing their likelihood of redispersing seeds outside of the nest (200%). Overall, these results demonstrate that secondary metabolites can alter the effectiveness of plant mutualisms, by both reducing mutualism quantity and altering mutualism quality through multiple mechanisms. These findings present a critical step in understanding the factors mediating the outcomes of seed dispersal and, more broadly, demonstrate the importance of considering how defensive secondary metabolites influence the outcomes of mutualisms surrounding plants.more » « less
An official website of the United States government
