Inquiry is featured prominently in the Next Generation Science Standards (NGSS) as a promising pedagogical approach. Building on current conceptions of inquiry, a mixed-methods research design was used to explore the effects of Project-Based Inquiry (PBI) Global on student science content knowledge, motivation, and perspectives related to inquiry in a cross-school collaboration. The data sources included pre-/post-tests on science content and student motivation (n = 75), transcripts from student focus groups (n = 26), and students’ multimodal learning products (n = 18 teams). The quantitative findings indicated School B students were more motivated by the project than School A students, which mirrored student performance. The student focus group findings generated three themes: constructing empathy, learning for impact, and navigating challenges. The discussion focuses on an integrated view of what students gained and did not gain from the PBI Global experience, including a nuanced explanation of how motivation and content knowledge may be influenced by student experiences and school contextual factors during PBI Global. Implications for instructional practice highlight how relationship building, mutual respect, and consensus making are essential components of constructing cross-school collaborations and the importance of integrating instructional frameworks with teachers and students. Future research will focus on investigating the effects of PBI Global on student learning in cross-school partnerships through experimental-designed studies, and the systemic and structural barriers to scaling cross-school inquiry-based learning.
more »
« less
Isolating Microplastics from Biofilm Communities
Plastic debris in aquatic and marine environments often breaks up into fragments that are smaller than 5 millimeters, which are then classified as microplastics. While there is not yet a standardized and validated methodology for characterizing microplastics, the protocol developed in this study uses methods for isolating and observing microplastics and for the investigation of how they interact with organisms present in biofilms from urban waterways. Project-based learning (PBL) has been proven to be a successful strategy in K–12 science education; the implementation of PBL provides opportunities for student-driven inquiry and provides teachers with a means to integrate curriculum with current research and to consider the effects of human impacts on the environment. This paper describes the protocol developed for high school teachers to educate students about microplastics and how to successfully isolate and observe them. Teachers and students in Maryland successfully isolated microplastics from biofilm samples from the Inner Harbor, Baltimore, Maryland, and shared their results. International teachers and students in Barcelona, Spain, involved in a related project, had similar results and shared experiences through images, video, and online meetings. These collaborations provide important opportunities for student-driven inquiry and for them to engage in methods of current scientific research.
more »
« less
- Award ID(s):
- 1824807
- PAR ID:
- 10448557
- Date Published:
- Journal Name:
- The American Biology Teacher
- Volume:
- 84
- Issue:
- 9
- ISSN:
- 0002-7685
- Page Range / eLocation ID:
- 555 to 561
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Science education integrates the study of and practices from the Next Generation Science Standards (NGSS). At the fundamental level, the pedagogy involves teaching and learning that emphasizes the use of scientific inquiry and the engineering design process to develop students’ problem-solving, critical thinking, and collaboration skills. Unfortunately, funding and professional development for teachers, which is essential to assure successful implementation of science lessons to increase the potential for student achievement, is lacking. Therefore, this NSF-funded science-education research project explored the development of a model that deepens the existing partnerships among grass-roots, non-profit community education organizations, K-12 public schools, and local university partners. Together, they worked collaboratively to develop systems where teachers could implement high-quality, place-based, NGSS-aligned science learning opportunities that actively engage students. This research project may lead to a future proposal for high-quality professional development for teachers, using the Teacher-to-Teacher professional development model, with the goal of impacting student achievement in science. The goals of this research project were to (1) develop a collaborative model that deepens community, public school, and university partnerships designed to support science educators and their students and (2) explore the current academic and social impact of the Teacher-to-Teacher professional development program as a possible solution for the development and implementation of high-quality, place-based, NGSS-aligned learning experiences for and with students. This presentation will focus on the components used to develop the partnership model with community partners, K-12 teachers and administrators, and university professors. Finally, the Teacher-to-Teacher (T2T) model and its new iteration, the Teacher-Plus-Community Partners T+CP Model will be shared for future development of place-based science learning experiences.more » « less
-
null (Ed.)Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction.more » « less
-
This work-in-progress (WIP) research-to-practice paper describes a work in progress by the authors to integrate appreciation of privacy, ethics, regulatory compliance, and research into Senior Project capstone experiences for Electrical and Computer Engineering. The student work focused on data quality assurance and de-identification topics to enhance quality, accuracy, completeness, consistency, and timeliness. Real-world data protection regulations grounded projects to meet ABET EAC Criterion 3 requirements for Student Outcome 2. Students explored the topics in a Project-Based Learning (PBL) format as a part of their senior project. In addition to implementing PBL, our focus for the senior project capstone is securing as many industrially sponsored projects as possible. This paper focuses on a few senior projects that are PBL, sponsored by industry, and emphasize data quality assurance and privacy protection techniques. We present a framework that meets assessment needs and uses project-based learning on a current topic of interest. The student findings offer insights into the theoretical and practical challenges and opportunities of implementing data quality assurance and de-identification techniques across different domains.more » « less
-
In pre-college levels, integrated science, technology, engineering, and mathematics (STEM) are often taught by science or mathematics teachers. These teachers lack the engineering and technology background and they do not necessarily use project-based and inquiry-oriented instructional strategies. To close the gap in the qualified STEM education teacher workforce, the authors developed and piloted a novel course to train preservice STEM teachers to effectively employ project-based and inquiry-oriented teaching strategies at pre-college levels. This 3-credit research and design experience course was piloted in the Spring 2023 semester. The preservice STEM teachers, enrolled in the course, engaged in hands-on activities, engineering project-based training, inquiry-based learning techniques through research training, makerspace training, field experience, and mentorship. The course comprised two parts. In part I, the students received research training. In part II, the students engaged in engineering design and makerspace professional development. In this paper, we report on the course design elements and the impact of the course activities on students’ self-efficacy in teaching STEM subjects using emerging technology, as well as their teaching approaches and understanding of student learning. The authors conducted a mixed methods study and collected both qualitative and quantitative data. Preliminary results of the multiyear study are presented. Initial findings indicate a heightened confidence of the students in their ability to deliver STEM content in secondary classrooms. Students improved their teaching approaches and reported positive experiences with the course.more » « less
An official website of the United States government

