skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 21, 2024

Title: Material-geometry interplay in damping of biomimetic scale beams
Biomimetic scale-covered substrates are architected meta-structures exhibiting fascinating emergent nonlinearities via the geometry of collective scales contacts. Despite much progress in understanding their elastic nonlinearity, their dissipative behavior arising from scales sliding is relatively uninvestigated in the dynamic regime. Recently discovered is the phenomena of viscous emergence, where dry Coulomb friction between scales can lead to apparent viscous damping behavior of the overall multi-material substrate. In contrast to this structural dissipation, material dissipation common in many polymers has never been considered, especially synergistically with geometrical factors. This aspect is addressed here, where material viscoelasticity is introduced via a simple Kelvin–Voigt model for brevity and clarity. The results contrast the two damping sources in these architectured systems: material viscoelasticity and geometrical frictional scales contact. It is discovered that although topically similar in effective damping, viscoelastic damping follows a different damping envelope than dry friction, including starkly different effects on damping symmetry and specific damping capacity.  more » « less
Award ID(s):
2028338
NSF-PAR ID:
10448594
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
8
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. “Viscosity is the most ubiquitous dissipative mechanical behavior” (Maugin, 1999). Despite its ubiquity, even for those systems where the mechanisms causing viscous and other forms of dissipation are known there are only a few quantitative models that extract the macroscopic rheological response from these microscopic mechanisms. One such mechanism is the stochastic breaking and forming of bonds which is present in polymer networks with transient cross-links, strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array of rheological behaviors at the macroscale. We find that varying the bond interactions induces a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear thickening, or solid like friction when subjected to shear at constant rates. When bond rupture is independent of the force applied, Newtonian viscosity is the predominant behavior. When bond breaking is accelerated by the applied force, a shear thinning response becomes most prevalent. Further connections of the macroscopic response to the interaction potential and rates of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases. Finally, we apply this model to polymer networks and to experimental data on “solid bridges” in polydisperse granular media. We imagine possible applications to material design through engineering bonds with specific interactions to bring about a desired macroscopic behavior. 
    more » « less
  2. null (Ed.)
    Abstract Stiff scales adorn the exterior surfaces of fishes, snakes, and many reptiles. They provide protection from external piercing attacks and control over global deformation behavior to aid locomotion, slithering, and swimming across a wide range of environmental condition. In this report, we investigate the dynamic behavior of biomimetic scale substrates for further understanding the origins of the nonlinearity that involve various aspect of scales interaction, sliding kinematics, interfacial friction, and their combination. Particularly, we study the vibrational characteristics through an analytical model and numerical investigations for the case of a simply supported scale covered beam. Our results reveal for the first time that biomimetic scale beams exhibit viscous damping behavior even when only Coulomb friction is postulated for free vibrations. We anticipate and quantify the anisotropy in the damping behavior with respect to curvature. We also find that unlike static pure bending where friction increases bending stiffness, a corresponding increase in natural frequency for the dynamic case does not arise for simply supported beam. Since both scale geometry, distribution and interfacial properties can be easily tailored, our study indicates a biomimetic strategy to design exceptional synthetic materials with tailorable damping behavior. 
    more » « less
  3. We study the active flow around isolated defects and the self-propulsion velocity of + 1 / 2 defects in an active nematic film with both viscous dissipation (with viscosity η ) and frictional damping Γ with a substrate. The interplay between these two dissipation mechanisms is controlled by the hydrodynamic dissipation length ℓ d = η / Γ that screens the flows. For an isolated defect, in the absence of screening from other defects, the size of the shear vorticity around the defect is controlled by the system size R . In the presence of friction that leads to a finite value of ℓ d , the vorticity field decays to zero on the lengthscales larger than ℓ d . We show that the self-propulsion velocity of + 1 / 2 defects grows with R in small systems where R < ℓ d , while in the infinite system limit or when R ≫ ℓ d , it approaches a constant value determined by ℓ d . 
    more » « less
  4. Abstract

    The friction between two adjacent tectonic plates under shear loading may dictate seismic activities. To advance the understanding of mechanisms underlying fault strength, we investigate the frictional characteristics of calcite in an aqueous environment. By conducting single-asperity friction experiments using an atomic force microscope, here we show three pathways of energy dissipation with increasing contact stresses: viscous shear of a lubricious solution film at low normal stresses; shear-promoted thermally activated slip, similar to dry friction but influenced by the hydrated ions localized at the interface; and pressure-solution facilitated slip at sufficiently high stresses and slow sliding velocities, which leads to a prominent decrease in friction. It is also shown that the composition of the aqueous solution affects the frictional response. We use this nanoscale evidence to scrutinize the role of brines on fault behavior and argue that pressure solution provides a weakening mechanism of the fault strength at the level of single-asperity contacts.

     
    more » « less
  5. ABSTRACT:

    The chemo-mechanical loading of rocks causes the dissolution and precipitation of multiple phases in the rock. This dissolution and precipitation of load-bearing mineral phases lead to the stress redistribution in neighboring phases, which in turn results in deformational changes of the sample composite. The aim of this study is to investigate the link between microstructural evolution and creep behavior of shale rocks subjected to chemo-mechanical loading through modeling time-dependent deformation induced by the dissolution-precipitation process. The model couples the microstructural evolution of the shale rocks with the stress/strain fields inside the material as a function of time. The modeling effort is supplemented with an experimental study where shale rocks were exposed to CO2-rich brine under high temperature and pressure conditions. 3D snapshots of the sample microstructure were generated using segmented micro-CT images of the shale sample. The time-evolving microstructures were then integrated with the Finite element-based mechanical model to simulate the creep induced by dissolution and precipitation processes independent of the intrinsic viscoelasticity/viscoplasticity of the mineral phases. After computation of the time-dependent viscoelastic properties of the shale composite, the combined microstructure model and finite element model were utilized to predict the time-dependent stress and strain fields in different zones of reacted shale.

    1. INTRODUCTION

    Determination of viscous behavior of shale rocks is key in wide range of applications such as stability of reservoirs, stability of geo-structures subjected to environmental forcing, underground storage of hazardous materials and hydraulic fracturing. Short-term creep strains in hydraulic fracturing can change stress fields and in turn can impact the hydraulic fracturing procedures(H. Sone & Zoback, 2010; Hiroki Sone & Zoback, 2013). While long-term creep strains can hamper the reservoir performance due to the reduction in permeability of the reservoir by closing of fractures and fissures(Du, Hu, Meegoda, & Zhang, 2018; Rybacki, Meier, & Dresen, 2016; Sharma, Prakash, & Abedi, 2019; Hiroki Sone & Zoback, 2014). Owing to these significance of creep strain, it is important to understand the viscoelastic/viscoplastic behavior of shales.

     
    more » « less