Abstract We present observations that suggest the X-line of guide-field magnetic reconnection is not necessarily orthogonal to the plane in which magnetic reconnection is occurring. The plane of magnetic reconnection is often referred to as theL–Nplane, whereLis the direction of the reversing and reconnecting magnetic field andNis normal to the current sheet. The X-line is often assumed to be orthogonal to theL–Nplane (defined as theM-direction) in the majority of theoretical studies and numerical simulations. The four-satellite Magnetospheric Multiscale (MMS) mission, however, observes a guide-field magnetic reconnection event in Earth’s magnetotail in which the X-line may be oblique to theL–Nplane. This finding is somewhat opportune as two of the MMS satellites at the sameNlocation report nearly identical observations with no significant time delays in the electron diffusion region (EDR) even though they have substantial separation inL. A minimum directional derivative analysis suggests that the X-line is between 40° and 60° fromM, adding support that the X-line is oblique. Furthermore, the measured ion velocity is inconsistent with the apparent motion of the MMS spacecraft in theL-direction through the EDR, which can be resolved if one assumes a shear in theL–Nplane and motion in theM-direction. A nonorthogonal X-line, if somewhat common, would call for revisiting theory and simulations of guide-field magnetic reconnection, reexamination of how the reconnection electric field is supported in the EDR, and reconsidering the large-scale geometry of the X-line.
more »
« less
The Nonorthogonal X-line in a Small Guide-field Reconnection Event in the Magnetotail
Abstract Magnetic reconnection is a fundamental plasma process that has been studied with analytical theory, numerical simulations, in situ observations, and laboratory experiments for decades. The models that have been established to describe magnetic reconnection often assume a reconnection plane normal to the current sheet in which an antiparallel magnetic field annihilates. The annihilation points, also known as the X-points, form an x -line, which is believed to be perpendicular to the reconnection plane. Recently, a new study using Magnetospheric Multiscale mission observations has challenged our understanding of magnetic reconnection by providing evidence that the x -line is not necessarily orthogonal to the reconnection plane. In this study we report a second nonorthogonal x -line event with similar features as that in the previous case study, supporting that the sheared x -line phenomenon is not an aberrant event. We employ a detailed directional derivative analysis to identify the x -line direction and show that the in-plane reconnection characteristics are well maintained even with a nonorthogonal x -line. In addition, we find the x -line tends to follow the magnetic field on one side of the current sheet, which suggests an asymmetry across the current sheet. We discuss the possibility that the nonorthogonal x -line arises from an interplay between the two aspects of reconnection: the macroscopic magnetic field topology and microscopic particle kinetics.
more »
« less
- Award ID(s):
- 2000222
- PAR ID:
- 10448909
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 168
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We use the magnetohydrodynamic (MHD) with embedded particle‐in‐cell model (MHD‐EPIC) to study the Geospace Environment Modeling (GEM) dayside kinetic processes challenge event at 01:50–03:00 UT on 18 November 2015, when the magnetosphere was driven by a steady southward interplanetary magnetic field (IMF). In the MHD‐EPIC simulation, the dayside magnetopause is covered by a PIC code so that the dayside reconnection is properly handled. We compare the magnetic fields and the plasma profiles of the magnetopause crossing with the MMS3 spacecraft observations. Most variables match the observations well in the magnetosphere, in the magnetosheath, and also during the current sheet crossing. The MHD‐EPIC simulation produces flux ropes, and we demonstrate that some magnetic field and plasma features observed by the MMS3 spacecraft can be reproduced by a flux rope crossing event. We use an algorithm to automatically identify the reconnection sites from the simulation results. It turns out that there are usually multiple X‐lines at the magnetopause. By tracing the locations of the X‐lines, we find that the typical moving speed of the X‐line endpoints is about 70 km/s, which is higher than but still comparable with the ground‐based observations.more » « less
-
Abstract We investigate the detailed properties of electron inflow in an electron-only reconnection event observed by the four Magnetospheric Multiscale (MMS) spacecraft in the Earth's turbulent magnetosheath downstream of the quasi-parallel bow shock. The lack of ion coupling was attributed to the small-scale sizes of the current sheets, and the observed bidirectional super-Alfvénic electron jets indicate that the MMS spacecraft crossed the reconnecting current sheet on both sides of an active X-line. Remarkably, the MMS spacecraft observed the presence of large asymmetries in the two electron inflows, with the inflows (normal to the current sheet) on the two sides of the reconnecting current layer differing by as much as a factor of four. Furthermore, even though the four MMS spacecraft were separated by less than seven electron skin depths, the degree of inflow asymmetry was significantly different at the different spacecraft. The asymmetry in the inflow speeds was larger with increasing distances downstream from the reconnection site, and the asymmetry was opposite on the two sides of the X-line. We compare the MMS observations with a 2D kinetic particle-in-cell (PIC) simulation and find that the asymmetry in the inflow speeds stems from in-plane currents generated via the combination of reconnection-mediated inflows and parallel flows along the magnetic separatrices in the presence of a large guide field.more » « less
-
Abstract Magnetic reconnection is understood to be the main physical process that facilitates the transformation of magnetic energy into heat, motion, and particle acceleration during solar eruptions. Yet, observational constraints on reconnection region properties and dynamics are limited due to a lack of high-cadence and high-spatial-resolution observations. By studying the evolution and morphology of postreconnected field-lines footpoints, or flare ribbons and vector photospheric magnetic field, we estimate the magnetic reconnection flux and its rate of change with time to study the flare reconnection process and dynamics of the current sheet above. We compare high-resolution imaging data to study the evolution of the fine structure in flare ribbons as ribbons spread away from the polarity inversion line. Using data from two illustrative events (one M- and X-class flare), we explore the relationship between the ribbon-front fine structure and the temporal development of bursts in the reconnection region. Additionally, we use theRibbonDBdatabase to perform statistical analysis of 73 (C- to X-class) flares and identify quasiperiodic pulsation (QPP) properties using the Wavelet Transform. Our main finding is the discovery of QPP signatures in the derived magnetic reconnection rates in both example events and the large flare sample. We find that the oscillation periods range from 1 to 4 minutes. Furthermore, we find nearly cotemporal bursts in Hard X-ray (HXR) emission profiles. We discuss how dynamical processes in the current sheet involving plasmoids can explain the nearly cotemporal signatures of quasiperiodicity in the reconnection rates and HXR emission.more » « less
-
Abstract Mining of substorm magnetic field data reveals the formation of two X‐lines preceded by the flux accumulation at the tailward end of a thin current sheet (TCS). Three‐dimensional particle‐in‐cell simulations guided by these pre‐onset reconnection features are performed, taking also into account weak external driving, negative charging of TCS and domination of electrons as current carriers. Simulations reveal an interesting multiscale picture. On the global scale, they show the formation of two X‐lines, with stronger magnetic field variations and inhomogeneous electric fields found closer to Earth. The X‐line appearance is preceded by the formation of two diverging electron outflow regions embedded into a single diverging ion outflow pattern and transforming into faster electron‐scale reconnection jets after the onset. Distributions of the agyrotropy parameters suggest that reconnection is provided by ion and then electron demagnetization. The bulk flow and agyrotropy distributions are consistent with MMS observations.more » « less
An official website of the United States government

