skip to main content


Title: Deconstructing the Gestalt: New concepts and tests of homology, as exemplified by a re‐conceptualization of “microstomy” in squamates
Abstract

Snakes—a subset of lizards—have traditionally been divided into two major groups based on feeding mechanics: “macrostomy,” involving the ingestion of proportionally large prey items; and “microstomy,” the lack of this ability. “Microstomy”—considered present in scolecophidian and early‐diverging alethinophidian snakes—is generally viewed as a symplesiomorphy shared with non‐snake lizards. However, this perspective of “microstomy” as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across “microstomatan” squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or “morphotypes,” which underlies our re‐assessment of “microstomy.” Using micro‐computed tomography (micro‐CT) scans, we analyze the morphology of the jaws and suspensorium across purported “microstomatan” squamates (scolecophidians, early‐diverging alethinophidians, and non‐snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating “microstomy” as a uniform condition, we instead propose that non‐snake lizards, early‐diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: “minimal‐kinesis microstomy,” “snout‐shifting,” “axle‐brace maxillary raking,” “mandibular raking,” and “single‐axle maxillary raking,” respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and “microstomy” in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.

 
more » « less
Award ID(s):
1902242
NSF-PAR ID:
10448999
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
304
Issue:
10
ISSN:
1932-8486
Page Range / eLocation ID:
p. 2303-2351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Comparative osteological analyses of extant organisms provide key insight into major evolutionary transitions and phylogenetic hypotheses. This is especially true for snakes, given their unique morphology relative to other squamates and the persistent controversy regarding their evolutionary origins. However, the osteology of several major snake groups remains undescribed, thus hindering efforts to accurately reconstruct the phylogeny of snakes. One such group is the Atractaspididae, a family of fossorial colubroids. We herein present the first detailed description of the atractaspidid skull, based on fully segmented micro‐computed tomography (micro‐CT) scans ofAtractaspis irregularis. The skull ofAtractaspispresents a highly unique morphology influenced by both fossoriality and paedomorphosis. This paedomorphosis is especially evident in the jaws, palate, and suspensorium, the major elements associated with macrostomy (large‐gaped feeding in snakes). Comparison to scolecophidians—a group of blind, fossorial, miniaturized snakes—in turn sheds light on current hypotheses of snake phylogeny. Features of both the naso‐frontal joint and the morphofunctional system related to macrostomy refute the traditional notion that scolecophidians are fundamentally different from alethinophidians (all other extant snakes). Instead, these features support the controversial hypothesis of scolecophidians as regressed alethinophidians, in contrast to their traditional placement as the earliest‐diverging snake lineage. We propose thatAtractaspisand scolecophidians fall along a morphological continuum, characterized by differing degrees of paedomorphosis. Altogether, a combination of heterochrony and miniaturization provides a mechanism for the derivation of the scolecophidian skull from an ancestral fossorial alethinophidian morphotype, exemplified by the nonminiaturized and less extreme paedomorphAtractaspis.

     
    more » « less
  2. Abstract

    Predators must contend with numerous challenges to successfully find and subjugate prey. Complex traits related to hunting are partially controlled by a large number of co‐evolved genes, which may be disrupted in hybrids. Accordingly, research on the feeding ecology of animals in hybrid zones has shown that hybrids sometimes exhibit transgressive or novel behaviors, yet for many taxa, empirical studies of predation and diet across hybrid zones are lacking. We undertook the first such field study for a hybrid zone between two snake species, the Mojave rattlesnake (Crotalus scutulatus) and the prairie rattlesnake (Crotalus viridis). Specifically, we leveraged established field methods to quantify the hunting behaviors of animals, their prey communities, and the diet of individuals across the hybrid zone in southwestern New Mexico, USA. We found that, even though hybrids had significantly lower body condition indices than snakes from either parental group, hybrids were generally similar to non‐hybrids in hunting behavior, prey encounter rates, and predatory attack and success. We also found that, compared toC. scutulatus,C. viridiswas significantly more active while hunting at night and abandoned ambush sites earlier in the morning, and hybrids tended to be moreviridis‐like in this respect. Prey availability was similar across the study sites, including within the hybrid zone, with kangaroo rats (Dipodomysspp.) as the most common small mammal, both in habitat surveys and the frequency of encounters with hunting rattlesnakes. Analysis of prey remains in stomachs and feces also showed broad similarity in diets, with all snakes preying primarily on small mammals and secondarily on lizards. Taken together, our results suggest that the significantly lower body condition of hybrids does not appear to be driven by differences in their hunting behavior or diet and may instead relate to metabolic efficiency or other physiological traits we have not yet identified.

     
    more » « less
  3. Abstract Broad paradigms of vertebrate genomic repeat element evolution have been largely shaped by analyses of mammalian and avian genomes. Here, based on analyses of genomes sequenced from over 60 squamate reptiles (lizards and snakes), we show that patterns of genomic repeat landscape evolution in squamates challenge such paradigms. Despite low variance in genome size, squamate genomes exhibit surprisingly high variation among species in abundance (ca. 25–73% of the genome) and composition of identifiable repeat elements. We also demonstrate that snake genomes have experienced microsatellite seeding by transposable elements at a scale unparalleled among eukaryotes, leading to some snake genomes containing the highest microsatellite content of any known eukaryote. Our analyses of transposable element evolution across squamates also suggest that lineage-specific variation in mechanisms of transposable element activity and silencing, rather than variation in species-specific demography, may play a dominant role in driving variation in repeat element landscapes across squamate phylogeny. 
    more » « less
  4. Abstract

    We compared the head skeleton (skull and lower jaw) of juvenile and adult specimens of five snake species [Anilios(=Ramphotyphlops)bicolor,Cylindrophis ruffus,Aspidites melanocephalus,Acrochordus arafurae, andNotechis scutatus] and two lizard outgroups (Ctenophorus decresii,Varanus gilleni). All major ontogenetic changes observed were documented both qualitatively and quantitatively. Qualitative comparisons were based on high‐resolution micro‐CTscanning of the specimens, and detailed quantitative analyses were performed using three‐dimensional geometric morphometrics. Two sets of landmarks were used, one for accurate representation of the intraspecific transformations of each skull and jaw configuration, and the other for comparison between taxa. Our results document the ontogenetic elaboration of crests and processes for muscle attachment (especially for cervical and adductor muscles); negative allometry in the braincase of all taxa; approximately isometric growth of the snout of all taxa exceptVaranusandAnilios(positively allometric); and positive allometry in the quadrates of the macrostomatan snakesAspidites,AcrochordusandNotechis, but also, surprisingly, in the iguanian lizardCtenophorus. Ontogenetic trajectories from principal component analysis provide evidence for paedomorphosis inAniliosand peramorphosis inAcrochordus. Some primitive (lizard‐like) features are described for the first time in the juvenileCylindrophis. Two distinct developmental trajectories for the achievement of the macrostomatan (large‐gaped) condition in adult snakes are documented, driven either by positive allometry of supratemporal and quadrate (in pythons), or of quadrate alone (in sampled caenophidians); this is consistent with hypothesised homoplasy in this adaptive complex. Certain traits (e.g. shape of coronoid process, marginal tooth counts) are more stable throughout postnatal ontogeny than others (e.g. basisphenoid keel), with implications for their reliability as phylogenetic characters.

     
    more » « less
  5. Female genitalia are conspicuously overlooked in comparison to their male counterparts, limiting our understanding of sexual reproduction across vertebrate lineages. This study is the first complete description of the clitoris (hemiclitores) in female snakes. We describe morphological variation in size and shape ( n = 9 species, 4 families) that is potentially comparable to the male intromittent organs in squamate reptiles (hemipenes). Dissection, diffusible iodine contrast-enhanced micro-CT and histology revealed that, unlike lizard hemiclitores, the snake hemiclitores are non-eversible structures. The two individual hemiclitores are separated medially by connective tissue, forming a triangular structure that extends posteriorly. Histology of the hemiclitores in Australian death adders ( Acanthophis antarcticus ) showed erectile tissue and strands/bundles of nerves, but no spines (as is found in male hemipenes). These histological features suggest the snake hemiclitores have functional significance in mating and definitively show that the hemiclitores are not underdeveloped hemipenes or scent glands, which have been erroneously indicated in other studies. Our discovery supports that hemiclitores have been retained across squamates and provides preliminary evidence of differences in this structure among snake species, which can be used to further understand systematics, reproductive evolution and ecology across squamate reptiles. 
    more » « less