skip to main content


Title: A Next Generation Ocean Carbon Isotope Model for Climate Studies I: Steady State Controls on Ocean 13 C
Abstract

The13C/12C of dissolved inorganic carbon (δ13CDIC) carries valuable information on ocean biological C‐cycling, air‐sea CO2exchange, and circulation. Paleo‐reconstructions of oceanic13C from sediment cores provide key insights into past as changes in these three drivers. As a step toward full inclusion of13C in the next generation of Earth system models, we implemented13C‐cycling in a 1° lateral resolution ocean‐ice‐biogeochemistry Geophysical Fluid Dynamics Laboratory (GFDL) model driven by Common Ocean Reference Experiment perpetual year forcing. The model improved the mean of modernδ13CDICover coarser resolution GFDL‐model implementations, capturing the Southern Ocean decline in surfaceδ13CDICthat propagates to the deep sea via deep water formation. Controls onδ13CDICof the deep‐sea are quantified using both observations and model output. The biological control is estimated from the relationship between deep‐sea Pacificδ13CDICand phosphate (PO4). Theδ13CDIC:PO4slope from observations is revised to a value of 1.01 ± 0.02‰ (μmol kg−1)−1, consistent with a carbon to phosphate ratio of organic matter (C:Porg) of 124 ± 10. Model output yields a lowerδ13CDIC:PO4than observed due to too low C:Porg. The ocean circulation impacts deep modernδ13CDICin two ways, via the relative proportion of Southern Ocean and North Atlantic deep water masses, and via the preindustrialδ13CDICof these water mass endmembers. Theδ13CDICof the endmembers ventilating the deep sea are shown to be highly sensitive to the wind speed dependence of air‐sea CO2gas exchange. Reducing the coefficient for air‐sea gas exchange following OMIP‐CMIP6 protocols improves significantly surfaceδ13CDICrelative to previous gas exchange parameterizations.

 
more » « less
NSF-PAR ID:
10449090
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
35
Issue:
4
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Systematic regional variations in the ratio of nutrient depth gradients of dissolved inorganic carbon (ΔDIC):nitrate (ΔNO3):phosphate (ΔPO4) in the upper layer (300 m) of the Pacific Ocean are observed. Regional variations in the ΔDIC/ΔNO3/ΔPO4are primarily the result of three processes, that is, the C/N/P of organic matter (OM) being exported and subsequently degraded, nitrogen fixation, and air‐sea CO2gas exchange. The link between the observed dissolved ΔDIC/ΔNO3/ΔPO4and the C/N/P of exported OM is established using surface layer dissolved DIC, NO3, and PO4budgets. These budgets, in turn, provide a means to indirectly estimate the C/N/P of OM being exported from the surface layer of the ocean. The indirectly estimated C/N/P of exported OM reach maxima in the subtropical gyres at 177/22/1, that is, significantly greater than the Redfield ratio and a minimum in the equatorial ocean at 109/16/1 with both results agreeing with available observed particle C/N/P and ocean biogeochemical models. The budget approach was applied to a bioactive trace element (TE) using the measured dissolved Cadmium (Cd) to PO4gradients to estimate the Cd/P of exported OM in the Pacific Ocean. Combining the budget method with the availability of high‐quality dissolved nutrient and TE data collected during the GOSHIP and GEOTRACES programs could potentially provide estimates of the C/N/P/TE of exported OM on global ocean scales which would significantly improve our understanding of the link between the ocean's biological pump and dissolved nutrient distributions in the upper ocean.

     
    more » « less
  2. Abstract

    We determined the impact of anthropogenic CO2(Cant) accumulation on the δ13C of dissolved inorganic carbon in the Arctic Ocean (i.e., the13C Suess effect) based on δ13C measurements during a GEOTRACES cruise in 2015. The δ13C decrease was estimated from the amount of Cantchange derived by the transit time distribution approach and the ratio of the anthropogenic δ13C/dissolved inorganic carbon change (RC). A significant Cantincrease (up to 45 μmol kg−1) and δ13C decrease (up to −0.9‰) extends to ~2,000 m in the Canada and Makarov Basin. We find distinctly different RC values for the intermediate water (300–2,000 m) and upper halocline water (<200 m) of −0.020 and −0.012‰ (μmol kg−1)−1, respectively, which identifies two sources of Cantaccumulation from North Atlantic and North Pacific. Furthermore, estimated RC for intermediate waters is the same as the RC observed in the Greenland Sea and the rate of anthropogenic dissolved inorganic carbon increase estimated for intermediate waters at 0.9 μmol kg−1yr−1is identical to the estimated rate in the Iceland Sea. These observations indicate that the high rate of Cantaccumulation and δ13C decrease in the Arctic Ocean is primarily a result of the input of Cant, via ventilation of intermediate waters, from the Nordic Sea rather than local anthropogenic CO2uptake within the Arctic Basin. We determine the preindustrial δ13C (δ13CPI) distributions and find distinct δ13CPIsignatures of the intermediate and upper halocline waters that reflect the difference in δ13CPI–PO4relationship of Atlantic and Pacific source water.

     
    more » « less
  3. Abstract

    The prevailing hypothesis to explain pCO2rise at the last glacial termination calls upon enhanced ventilation of excess respired carbon that accumulated in the deep sea during the glacial. Recent studies argue lower [O2] in the glacial ocean is indicative of increased carbon respiration. The magnitude of [O2] depletion was 100–140 µ mol/kg at the glacial maximum. Because respiration is coupled toδ13C of dissolved inorganic carbon (DIC), [O2] depletion of 100–140 µ mol/kg from carbon respiration would lower deep waterδ13CDICby ∼1‰ relative to surface water. Prolonged sequestration of respired carbon would also lower the amount of14C in the deep sea. We show that Pacific Deep Waterδ13CDICdid not decrease relative to the surface ocean and Δ14C was only ∼50‰ lower during the late glacial. Model simulations of the hypothesized ventilation change during deglaciation lead to large increases inδ13CDIC, Δ14C, andε14C that are not recorded in observations.

     
    more » « less
  4. Abstract

    The Ediacaran Doushantuo Formation in South China is a prime target for geobiological investigation because it offers opportunities to integrate chemostratigraphic and paleobiological data. Previous studies were mostly focused on successions in shallow‐water shelf facies, but data from deep‐water successions are needed to fully understand basinal redox structures. Here, we report δ13Ccarb, δ13Corg, δ34Spyr, δ34SCAS, and δ15Nseddata from a drill core of the fossiliferous Lantian Formation, which is a deep‐water equivalent of the Doushantuo Formation. Our data confirm a large (>10‰) spatial gradient in δ13Ccarbin the lower Doushantuo/Lantian formations, but this gradient is probably due to the greater sensitivity of carbonate‐poor deep‐water sediments to isotopic mixing with13C‐depleted carbonate cements. A pronounced negative δ13Ccarbexcursion (EN3) in the upper Doushantuo/Lantian formations, however, is spatially consistent and may be an equivalent of the Shuram excursion. δ34Spyris more negative in deeper‐water facies than in shallow‐water facies, particularly in the lower Doushantuo/Lantian formations, and this spatial pattern is interpreted as evidence for ocean redox stratification: Pyrite precipitated in euxinic deep waters has lower δ34Spyrthan that formed within shallow‐water sediments. The Lantian Formation was probably deposited in oscillating oxic and euxinic conditions. Euxinic black shales have higherTOCandTNcontents, but lower δ34Spyrand δ15Nsedvalues. In euxinic environments, pyrite was predominantly formed in the water column and organic nitrogen was predominantly derived from nitrogen fixation orNH4+assimilation because of quantitative denitrification, resulting in lower δ34Spyrand δ15Nsedvalues. Benthic macroalgae and putative animals occur exclusively in euxinic black shales. If preserved in situ, these organisms must have lived in brief oxic episodes punctuating largely euxinic intervals, only to be decimated and preserved when the local environment switched back to euxinia again. Thus, taphonomy and ecology were the primary factors controlling the stratigraphic distribution of macrofossils in the Lantian Formation.

     
    more » « less
  5. Abstract

    We apply a new approach for the δ13C analysis of single organic‐walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian–Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from −32 to −17‰, but average −25‰ across all samples and are consistently13C‐enriched compared to bulk sediments (δ13Cbulk) by ~0–10‰. We observe no difference between the δ13COWMof leiospheres (smooth‐walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13COWMand δ13Cbulkis in part due to a large δ13C gradient in the AB water column where OWM utilized relatively13C‐enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating13C‐depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13COWMand δ13Cbulkof 3‰ from shoreward to open‐ocean facies that may reflect the effect of13C‐enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single‐microfossil δ13Corganalyses of eukaryotes have been directly compared to bulk δ13Corgin the deep‐time fossil record.

     
    more » « less