Frontal ablation processes at marine‐terminating glaciers are challenging to observe and difficult to represent in numerical ice flow models, yet play critical roles in modulating ice sheet mass balance. Current ice sheet models typically rely on simple iceberg calving models to prescribe either terminus positions or iceberg calving rates, but the relative accuracies and uncertainties of these calving models remain largely unconstrained at the ice sheet scale. Here, we evaluate six published iceberg calving models against spatially and temporally diverse observations from 50 marine‐terminating outlet glaciers in Greenland. We seek the single model that best reproduces observed conditions across all glaciers, at all observation times, and with low sensitivity to calibration uncertainty. Five of six calving models can produce unbiased estimates of calving position or calving rate at the ice sheet scale. However, time series analysis reveals that, when using a single, optimized model parameter, rate‐predicting calving models frequently yield calving rate errors in excess of 10 m d−1. In comparison, terminus position‐predicting calving models more accurately track observed changes in terminus position (remaining within ~1 km of the observed grounded terminus position). Overall, our results indicate that the crevasse depth calving model provides the best balance of high accuracy and low sensitivity to imperfect parameter calibration. While the crevasse depth model appears unlikely to capture the true controls on crevasse penetration, numerically, it reproduces observed terminus dynamics with high fidelity and should be considered a leading candidate for use in models of the Greenland Ice Sheet.
The rate of land ice loss due to iceberg calving is a key source of variability among model projections of the 21st century sea level rise. It is especially challenging to account for mass loss due to iceberg calving in Greenland, where ice drains to the ocean through hundreds of outlet glaciers, many smaller than typical model grid scale. Here, we apply a numerically efficient network flowline model (SERMeQ) forced by surface mass balance to simulate an upper bound on decadal calving retreat of 155 grounded outlet glaciers of the Greenland Ice Sheet—resolving five times as many outlets as was previously possible. We show that the upper bound holds for 91% of glaciers examined and that simulated changes in terminus position correlate with observed changes. SERMeQ can provide a physically consistent constraint on forward projections of the dynamic mass loss from the Greenland Ice Sheet associated with different climate projections.
more » « less- PAR ID:
- 10449107
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 21
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The mass loss of the Greenland Ice Sheet is nearly equally partitioned between a decrease in surface mass balance from enhanced surface melt and an increase in ice dynamics from the acceleration and retreat of its marine-terminating glaciers. Much uncertainty remains in the future mass loss of the Greenland Ice Sheet due to the challenges of capturing the ice dynamic response to climate change in numerical models. Here, we estimate the sea level contribution of the Greenland Ice Sheet over the 21st century using an ice-sheet wide, high-resolution, ice-ocean numerical model that includes surface mass balance forcing, thermal forcing from the ocean, and iceberg calving dynamics. The model is calibrated with ice front observations from the past eleven years to capture the recent evolution of marine-terminating glaciers. Under a business as usual scenario, we find that northwest and central west Greenland glaciers will contribute more mass loss than other regions due to ice front retreat and ice flow acceleration. By the end of century, ice discharge from marine-terminating glaciers will contribute 50 ± 20% of the total mass loss, or twice as much as previously estimated although the contribution from the surface mass balance increases towards the end of the century.
-
Abstract The Greenland Ice Sheet has undergone rapid mass loss over the last four decades, primarily through solid and liquid discharge at marine‐terminating outlet glaciers. The acceleration of these glaciers is in part due to the increase in temperature of ocean water in contact with the glacier terminus. However, quantifying heat transport to the glacier through fjord circulation can be challenging due to iceberg abundance, which threatens instrument survival and fjord accessibility. Here we utilize iceberg movement to infer upper‐layer fjord circulation, as freely floating icebergs (i.e., outside the mélange region) behave as natural drifters. In the summers of 2014 and 2019, we deployed transmitting GPS units on a total of 13 icebergs in Ilulissat Icefjord, an iceberg‐rich and historically data‐poor fjord in west Greenland, to quantify circulation over the upper 0–250 m of the water column. We find that the direction of upper‐layer fjord circulation is strongly impacted by the timing of tributary meltwater runoff, while the speed of this circulation changes in concert with glacier behavior, which includes increases and decreases in glacier speed and meltwater runoff. During periods of increased meltwater runoff entering from tributary fjords, icebergs at these confluences deviated from their down‐fjord trajectory, even reversing up‐fjord, until the runoff pulse subsided days later. This study demonstrates the utility of iceberg monitoring to constrain upper‐layer fjord circulation, and highlights the importance of including tributary fjords in predictive models of heat transport and fjord circulation.
-
null (Ed.)Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing.more » « less
-
Abstract Almost half of the Greenland ice sheet's mass loss occurs through iceberg calving at marine terminating glaciers. The presence of buoyant subglacial discharge plumes at these marine termini are thought to increase mass loss both through submarine melting and by undercutting that consequently increases calving rates. Plume models are used to predict submarine melting and undercutting. However, there are few observations that allow these relationships to be tested. Here, we use airborne lidar from the terminus of Helheim Glacier, SE Greenland to measure the bulge induced at the surface by the upwelling plume. We use these measurements to estimate plume discharge rates using a high‐resolution, three‐dimensional plume model. Multiyear observations of the plume are compared to a record of calving from camera and icequake data. We find no evidence to suggest that the presence of a plume, determined by its visibility at the surface, increases the frequency of major calving events and also show that mass loss at the terminus driven directly by plume discharge is significantly less than mass loss from major calving events. The results suggest that the contribution of direct plume‐driven mass loss at deep marine‐terminating glaciers may be less than at shallower termini.