skip to main content


Title: Spatial and temporal variations in Synechococcus microdiversity in the Southern California coastal ecosystem
Summary

TheSynechococcuscyanobacterial population at the Scripps Institution of Oceanography pier in La Jolla, CA, shows large increases in abundance, typically in the spring and summer followed, by rapid declines within weeks. Here we used amplicon sequencing of the ribosomal RNA internal transcribed spacer region to examine the microdiversity within this cyanobacterial genus during these blooms as well as further offshore in the Southern California coastal ecosystem (CCE). These analyses revealed numerousSynechococcusamplicon sequence variants (ASVs) and that clade and ASV composition can change over the course of blooms. We also found that a large bloom in August 2016 was highly anomalous both in its overallSynechococcusabundance and in terms of the presence of normally oligotrophicSynechococcusclade II. The dominant ASVs at the pier were found further offshore and in the California Current, but we did observe more oligotrophic ASVs and clades along with depth variation inSynechococcusdiversity. We also observed that the dominant sequence variant switched during the peak of multipleSynechococcusblooms, with this switch occurring in multiple clades, but we present initial evidence that this apparent ASV switch is a physiological response rather than a change in the dominant population.

 
more » « less
Award ID(s):
1637632
NSF-PAR ID:
10449111
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
23
Issue:
1
ISSN:
1462-2912
Format(s):
Medium: X Size: p. 252-266
Size(s):
p. 252-266
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cryptophytes (class Cryptophyceae) are bi‐flagellated eukaryotic protists with mixed nutritional modes and cosmopolitan distribution in aquatic environments. Despite their ubiquitous presence, their molecular diversity is understudied in coastal waters. Weekly 18S rRNA gene amplicon sequencing at the Scripps Institution of Oceanography pier (La Jolla, California) in 2016 revealed 16 unique cryptophyte amplicon sequence variants (ASVs), with two dominant “clade 4” ASVs. The diversity of cryptophytes was lower than what is often seen in other phytoplankton taxa. One ASV represented a knownSynechococcusgrazer, while the other one appeared not to have cultured representatives and an unknown potential for mixotrophy. These two dominant ASVs were negatively correlated, suggesting possible niche differentiation. The cryptophyte population in nearby San Diego Bay was surveyed in 2019 and showed the increasing dominance of a different clade 4 ASV toward the back of the bay where conditions are warmer, saltier, and shallower relative to other areas in the bay. An ASV representing a potentially chromatically acclimating cryptophyte species also suggested that San Diego Bay exerts differing ecological selection pressures than nearby coastal waters. Cryptophyte andSynechococcuscell abundance at the SIO Pier from 2011 to 2017 showed that cryptophytes were consistently present and had a significant correlation withSynechococcusabundance, but no detectable seasonality. The demonstrated mixotrophy of some cryptophytes suggests that grazing on these and perhaps other bacteria is important for their ecological success. Using several assumptions, we calculated that cryptophytes could consume up to 44% (average 6%) of theSynechococcuspopulation per day. This implies that cryptophytes could significantly influenceSynechococcusabundance.

     
    more » « less
  2. Summary

    Currently defined ecotypes in marine cyanobacteriaProchlorococcusandSynechococcuslikely contain subpopulations that themselves are ecologically distinct. We developed and applied high‐throughput sequencing for the 16S‐23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine‐scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time‐series site. Ecotype‐level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4‐like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time‐lagged predator–prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine‐scale variants within ecotypes.

     
    more » « less
  3. Abstract

    Diatoms are important components of the marine food web and one of the most species‐rich groups of phytoplankton. The diversity and composition of diatoms in eutrophic nearshore habitats have been well documented due to the outsized influence of diatoms on coastal ecosystem functioning. In contrast, patterns of both diatom diversity and community composition in offshore oligotrophic regions where diatom biomass is low have been poorly resolved. To compare the diatom diversity and community composition in oligotrophic and eutrophic waters, diatom communities were sampled along a 1,250 km transect from the oligotrophic Sargasso Sea to the coastal waters of the northeast US shelf. Diatom community composition was determined by amplifying and sequencing the 18S rDNA V4 region. Of the 301 amplicon sequence variants (ASVs) identified along the transect, the majority (70%) were sampled exclusively from oligotrophic waters of the Gulf Stream and Sargasso Sea and included the generaBacteriastrum,Haslea,Hemiaulus,Pseudonitzschia, andNitzschia. Diatom ASV richness did not vary along the transect, indicating that the oligotrophic Sargasso Sea and Gulf Stream are occupied by a diverse diatom community. Although ASV richness was similar between oligotrophic and coastal waters, diatom community composition in these regions differed significantly and was correlated with temperature and phosphate, two environmental variables known to influence diatom metabolism and geographic distribution. In sum, oligotrophic waters of the western North Atlantic harbor diverse diatom assemblages that are distinct from coastal regions, and these open ocean diatoms warrant additional study, as they may play critical roles in oligotrophic ecosystems.

     
    more » « less
  4. Abstract

    Diatoms are among the most abundant phytoplankton that inhabit coastal ecosystems, forming large blooms that fuel coastal food webs. Although diatoms are often large and morphologically distinct, many are small or morphologically cryptic making it difficult to understand the temporal dynamics of whole diatom communities and the environmental factors that drive them. Here, we investigated diatom diversity and its environmental correlates using 6 yr of monthly surface water samples from the Narragansett Bay Plankton Time Series to investigate the seasonal and annual variability of diatom species occurrence. High‐throughput amplicon sequencing of filtered biomass yielded 658 diatom amplicon sequence variants (ASVs), of which 347 were identified to species. Of the 49 diatom genera in the sequencing dataset, 33% had never been observed in the time series using microscopy (1959–2014). We observed a weak quadratic relationship between ASV richness and chlorophyll‐aconcentrations, suggesting that richness decreases during blooms. There was a significant difference in diatom ASV richness by season and we identified distinct assemblages associated with different seasons. These assemblages were remarkably synchronous, exhibiting a sinewave‐like pattern, over 6 yr with an annual periodicity that correlated significantly with seasonal changes in temperature, light, and dissolved inorganic nitrogen. The annual cycle of diatom assemblages suggests stability in a key component of the estuarine food web known to influence ecosystem resilience and function. Deviations from the annual cycle of recurrence could be used to distinguish between changes in community structure driven by annual fluctuations in the environment and those driven by climate‐change stressors.

     
    more » « less
  5. ABSTRACT The European common cuttlefish, Sepia officinalis , is used extensively in biological and biomedical research, yet its microbiome remains poorly characterized. We analyzed the microbiota of the digestive tract, gills, and skin in mariculture-raised S. officinalis using a combination of 16S rRNA amplicon sequencing, quantitative PCR (qPCR), and fluorescence spectral imaging. Sequencing revealed a highly simplified microbiota consisting largely of two single bacterial amplicon sequence variants (ASVs) of Vibrionaceae and Piscirickettsiaceae . The esophagus was dominated by a single ASV of the genus Vibrio . Imaging revealed bacteria in the family Vibrionaceae distributed in a discrete layer that lines the esophagus. This Vibrio was also the primary ASV found in the microbiota of the stomach, cecum, and intestine, but occurred at lower abundance, as determined by qPCR, and was found only scattered in the lumen rather than in a discrete layer via imaging analysis. Treatment of animals with the commonly used antibiotic enrofloxacin led to a nearly 80% reduction of the dominant Vibrio ASV in the esophagus but did not significantly alter the relative abundance of bacteria overall between treated versus control animals. Data from the gills were dominated by a single ASV in the family Piscirickettsiaceae , which imaging visualized as small clusters of cells. We conclude that bacteria belonging to the Gammaproteobacteria are the major symbionts of the cuttlefish Sepia officinalis cultured from eggs in captivity and that the esophagus and gills are major colonization sites. IMPORTANCE Microbes can play critical roles in the physiology of their animal hosts, as evidenced in cephalopods by the role of Vibrio ( Aliivibrio ) fischeri in the light organ of the bobtail squid and the role of Alpha - and Gammaproteobacteria in the reproductive system and egg defense in a variety of cephalopods. We sampled the cuttlefish microbiome throughout the digestive tract, gills, and skin and found dense colonization of an unexpected site, the esophagus, by a microbe of the genus Vibrio , as well as colonization of gills by Piscirickettsiaceae . This finding expands the range of organisms and body sites known to be associated with Vibrio and is of potential significance for understanding host-symbiont associations, as well as for understanding and maintaining the health of cephalopods in mariculture. 
    more » « less