skip to main content


Title: Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment
Abstract

Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell‐derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell‐based therapies and have demonstrated anti‐inflammatory, anti‐apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV‐based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.

 
more » « less
NSF-PAR ID:
10449132
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Therapeutics
Volume:
4
Issue:
7
ISSN:
2366-3987
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Extracellular vesicles (EVs) derived from mesenchymal stem/stromal cells (MSCs) have recently been explored in clinical trials for treatment of diseases with complex pathophysiologies. However, production of MSC EVs is currently hampered by donor‐specific characteristics and limited ex vivo expansion capabilities before decreased potency, thus restricting their potential as a scalable and reproducible therapeutic. Induced pluripotent stem cells (iPSCs) represent a self‐renewing source for obtaining differentiated iPSC‐derived MSCs (iMSCs), circumventing both scalability and donor variability concerns for therapeutic EV production. Thus, it is initially sought to evaluate the therapeutic potential of iMSC EVs. Interestingly, while utilizing undifferentiated iPSC EVs as a control, it is found that their vascularization bioactivity is similar and their anti‐inflammatory bioactivity is superior to donor‐matched iMSC EVs in cell‐based assays. To supplement this initial in vitro bioactivity screen, a diabetic wound healing mouse model where both the pro‐vascularization and anti‐inflammatory activity of these EVs would be beneficial is employed. In this in vivo model, iPSC EVs more effectively mediate inflammation resolution within the wound bed. Combined with the lack of additional differentiation steps required for iMSC generation, these results support the use of undifferentiated iPSCs as a source for therapeutic EV production with respect to both scalability and efficacy.

     
    more » « less
  2. Abstract

    Extracellular vesicles (EVs) released by regenerative cells such as mesenchymal stem cells are effective facilitators of healing, therapy, and repair. Conversely, EVs released from infected and/or diseased cells could be useful as markers in the detection and diagnosis of disease conditions such as cancer at their earliest most detectable, and treatable stage. A very important type of EVs, termed exosomes offer a hypothetical new paradigm in disease detection, diagnosis, and treatment. A broad range of exosome‐based biomedical and therapeutic applications are now being evaluated in recent clinical trials. Exosomes are found in virtually all bodily fluids and cells and are capable of crossing tight junctions and toughly regulated boundaries such as the blood–brain barrier. Exosomes' expedition ends when they are taken up by bystander cells which corroborates the fact that they are conduits for cells releasing them. Exosomes released by diseased cells have been associated with cell‐to‐cell progression of diseases like viral disease, neurodegeneration, and certain cancers. Due to high discrimination in most disease conditions, exosome uptake is usually cell‐specific. Lots of research evidence have revealed that infusion of exosomes derived from regenerative cells such as stem cells could impede the development of certain infections and age‐related diseases by activating self‐repair machinery through RNA, DNA, protein, and lipid transfer between cells in patients. They have also been demonstrated in the restoration of the circulating population of exosomes in tissues and the fluid of recipients. The first human clinical trials of exosome therapies are now underway, establishing the future of regenerative exosome in regenerative medicine.

    This article is categorized under:

    Cancer > Stem Cells and Development

    Immune System Diseases > Stem Cells and Development

    Immune System Diseases > Molecular and Cellular Physiology

     
    more » « less
  3. Abstract

    Extracellular vesicles (EVs) secreted by human‐induced pluripotent stem cells (hiPSCs) have great potential as cell‐free therapies in various diseases, including prevention of blood–brain barrier senescence and stroke. However, there are still challenges in pre‐clinical and clinical use of hiPSC‐EVs due to the need for large‐scale production of a large quantity. Vertical‐Wheel bioreactors (VWBRs) have design features that allow the biomanufacturing of hiPSC‐EVs using a scalable aggregate or microcarrier‐based culture system under low shear stress. EV secretion by undifferentiated hiPSCs expanded as 3‐D aggregates and on Synthemax II microcarriers in VWBRs were investigated. Additionally, two types of EV collection media, mTeSR and HBM, were compared. The hiPSCs were characterized by metabolite and transcriptome analysis as well as EV biogenesis markers. Protein and microRNA cargo were analysed by proteomics and microRNA‐seq, respectively. Thein vitrofunctional assays of microglia stimulation and proliferation were conducted. HiPSCs expanded as 3‐D aggregates and on microcarriers had comparable cell number, while microcarrier culture had higher glucose consumption, higher glycolysis and lower autophagy gene expression based on mRNA‐seq. The microcarrier cultures had at least 17–23 fold higher EV secretion, and EV collection in mTeSR had 2.7–3.7 fold higher yield than HBM medium. Microcarrier culture with mTeSR EV collection had a smaller EV size than other groups, and the cargo was enriched with proteins (proteomics) and miRNAs (microRNA‐seq) reducing apoptosis and promoting cell proliferation (e.g. Wnt‐related pathways). hiPSC‐EVs demonstrated the ability of stimulating proliferation and M2 polarization of microgliain vitro. HiPSC expansion on microcarriers produces much higher yields of EVs than hiPSC aggregates in VWBRs. EV collection in mTeSR increases yield compared to HBM. The biomanufactured EVs from microcarrier culture in mTeSR have exosomal characteristics and are functional in microglia stimulation, which paves the ways for future in vivo anti‐aging study.

     
    more » « less
  4. Abstract

    Extracellular vesicles (EVs) are emerging as a potential diagnostic test for cancer. Owing to the recent advances in microfluidics, on‐chip EV isolation is showing promise with respect to improved recovery rates, smaller necessary sample volumes, and shorter processing times than ultracentrifugation. Immunoaffinity‐based microfluidic EV isolation using anti‐CD63 is widely used; however, anti‐CD63 is not specific to cancer‐EVs, and some cancers secrete EVs with low expression of CD63. Alternatively, phosphatidylserine (PS), usually expressed in the inner leaflet of the lipid bilayer of the cells, is shown to be expressed on the outer surface of cancer‐associated EVs. A new exosome isolation microfluidic device (newExoChip), conjugated with a PS‐specific protein, to isolate cancer‐associated exosomes from plasma, is presented. The device achieves 90% capture efficiency for cancer cell exosomes compared to 38% for healthy exosomes and isolates 35% more A549‐derived exosomes than an anti‐CD63‐conjugated device. Immobilized exosomes are then easily released using Ca2+chelation. The recovered exosomes from clinical samples are characterized by electron microscopy and western‐blot analysis, revealing exosomal shapes and exosomal protein expressions. ThenewExoChip facilitates the isolation of a specific subset of exosomes, allowing the exploration of the undiscovered roles of exosomes in cancer progression and metastasis.

     
    more » « less
  5. High-grade serous ovarian cancer (HGSOC) constitutes the majority of all ovarian cancer cases and has staggering rates of both refractory and recurrent disease. While most patients respond to the initial treatment with paclitaxel and platinum-based drugs, up to 25% do not, and of the remaining that do, 75% experience disease recurrence within the subsequent two years. Intrinsic resistance in refractory cases is driven by environmental stressors like tumor hypoxia which alter the tumor microenvironment to promote cancer progression and resistance to anticancer drugs. Recurrent disease describes the acquisition of chemoresistance whereby cancer cells survive the initial exposure to chemotherapy and develop adaptations to enhance their chances of surviving subsequent treatments. Of the environmental stressors cancer cells endure, exposure to hypoxia has been identified as a potent trigger and priming agent for the development of chemoresistance. Both in the presence of the stress of hypoxia or the therapeutic stress of chemotherapy, cancer cells manage to cope and develop adaptations which prime populations to survive in future stress. One adaptation is the modification in the secretome. Chemoresistance is associated with translational reprogramming for increased protein synthesis, ribosome biogenesis, and vesicle trafficking. This leads to increased production of soluble proteins and extracellular vesicles (EVs) involved in autocrine and paracrine signaling processes. Numerous studies have demonstrated that these factors are largely altered between the secretomes of chemosensitive and chemoresistant patients. Such factors include cytokines, growth factors, EVs, and EV-encapsulated microRNAs (miRNAs), which serve to induce invasive molecular, biophysical, and chemoresistant phenotypes in neighboring normal and cancer cells. This review examines the modifications in the secretome of distinct chemoresistant ovarian cancer cell populations and specific secreted factors, which may serve as candidate biomarkers for aggressive and chemoresistant cancers. 
    more » « less