skip to main content


Title: Changes in Under‐Ice Primary Production in the Chukchi Sea From 1988 to 2018
Abstract

Changes in sea ice thickness and extent have corresponded with substantial changes in net primary production (NPP) in the Arctic Ocean. In recent years, observations of massive phytoplankton blooms under sea ice have upended the previous paradigm that Arctic NPP was driven largely by growth in the marginal ice zone and open water periods. Here, a new 1‐D biogeochemical model capable of simulating ice algal and phytoplankton dynamics both under the ice and in open waters is applied in the northern Chukchi Sea for the years 1988–2018. Over this period, substantial under‐ice (UI) blooms were produced in all but four years and were the primary drivers of interannual variation in total NPP. While NPP in the UI period was highly variable interannually due to fluctuations in ice thickness and the length of the UI period, UI NPP accounted for nearly half of total NPP between 1988 and 2018. Further, years with high UI NPP had reduced annual zooplankton grazing, indicating an intensification in the mismatch between phytoplankton and zooplankton populations and possibly altering the partitioning of food between benthic and pelagic ecosystems. These results demonstrate that the often‐overlooked ice covered period can be highly productive in the Arctic Ocean, and that the northern Chukchi Sea has been amenable to UIB formation since at least 1988.

 
more » « less
NSF-PAR ID:
10449135
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
126
Issue:
9
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Incarbona, Alessandro (Ed.)
    Unusually warm conditions recently observed in the Pacific Arctic region included a dramatic loss of sea ice cover and an enhanced inflow of warmer Pacific-derived waters. Moored sediment traps deployed at three biological hotspots of the Distributed Biological Observatory (DBO) during this anomalously warm period collected sinking particles nearly continuously from June 2017 to July 2019 in the northern Bering Sea (DBO2) and in the southern Chukchi Sea (DBO3), and from August 2018 to July 2019 in the northern Chukchi Sea (DBO4). Fluxes of living algal cells, chlorophyll a (chl a ), total particulate matter (TPM), particulate organic carbon (POC), and zooplankton fecal pellets, along with zooplankton and meroplankton collected in the traps, were used to evaluate spatial and temporal variations in the development and composition of the phytoplankton and zooplankton communities in relation to sea ice cover and water temperature. The unprecedented sea ice loss of 2018 in the northern Bering Sea led to the export of a large bloom dominated by the exclusively pelagic diatoms Chaetoceros spp. at DBO2. Despite this intense bloom, early sea ice breakup resulted in shorter periods of enhanced chl a and diatom fluxes at all DBO sites, suggesting a weaker biological pump under reduced ice cover in the Pacific Arctic region, while the coincident increase or decrease in TPM and POC fluxes likely reflected variations in resuspension events. Meanwhile, the highest transport of warm Pacific waters during 2017–2018 led to a dominance of the small copepods Pseudocalanus at all sites. Whereas the export of ice-associated diatoms during 2019 suggested a return to more typical conditions in the northern Bering Sea, the impact on copepods persisted under the continuously enhanced transport of warm Pacific waters. Regardless, the biological pump remained strong on the shallow Pacific Arctic shelves. 
    more » « less
  2. Abstract

    At the base of the marine food web, phytoplankton are an essential component of the Arctic Ocean ecosystem and carbon cycle. Especially after sea ice retreats and light becomes more available to the Arctic Ocean each summer, phytoplankton productivity is limited by nutrient availability, which can be replenished by vertical mixing of the water column. One potential mixing mechanism is gale‐force wind associated with summer storm activity. Past studies show that sustained high winds (>10 m s−1) impart sufficient stress on the ocean surface to induce vertical mixing, and it has been speculated that greater storm activity may increase net primary productivity (NPP) on a year‐to‐year timescale. We test this idea using a combination of satellite products and reanalysis data from 1998 to 2018. After controlling for the amount of open water, sea‐surface temperature, and wind direction, we find evidence that greater frequency of high‐wind events in summer is associated with greater seasonal NPP in the Barents, Laptev, East Siberian, and southern Chukchi Seas. This relationship is only robust for the Barents and southern Chukchi Seas, which are more strongly impacted by inflow of relatively nutrient‐rich water from the Atlantic and Pacific Oceans, respectively. In other words, stormier summers may have higher productivity in several regions of the Arctic Ocean, but especially the two inflow seas. Additionally, a recent rise in high‐wind frequency in the Barents Sea may have contributed to the simultaneous increase in NPP.

     
    more » « less
  3. Abstract

    The ocean coastal‐shelf‐slope ecosystem west of the Antarctic Peninsula (WAP) is a biologically productive region that could potentially act as a large sink of atmospheric carbon dioxide. The duration of the sea‐ice season in the WAP shows large interannual variability. However, quantifying the mechanisms by which sea ice impacts biological productivity and surface dissolved inorganic carbon (DIC) remains a challenge due to the lack of data early in the phytoplankton growth season. In this study, we implemented a circulation, sea‐ice, and biogeochemistry model (MITgcm‐REcoM2) to study the effect of sea ice on phytoplankton blooms and surface DIC. Results were compared with satellite sea‐ice and ocean color, and research ship surveys from the Palmer Long‐Term Ecological Research (LTER) program. The simulations suggest that the annual sea‐ice cycle has an important role in the seasonal DIC drawdown. In years of early sea‐ice retreat, there is a longer growth season leading to larger seasonally integrated net primary production (NPP). Part of the biological uptake of DIC by phytoplankton, however, is counteracted by increased oceanic uptake of atmospheric CO2. Despite lower seasonal NPP, years of late sea‐ice retreat show larger DIC drawdown, attributed to lower air‐sea CO2fluxes and increased dilution by sea‐ice melt. The role of dissolved iron and iron limitation on WAP phytoplankton also remains a challenge due to the lack of data. The model results suggest sediments and glacial meltwater are the main sources in the coastal and shelf regions, with sediments being more influential in the northern coast.

     
    more » « less
  4. Abstract

    Climate model projections suggest a substantial decrease of sea ice export into the outflow areas of the Arctic Ocean over the 21st century. Fram Strait, located in the Greenland Sea sector, is the principal gateway for ice export from the Arctic Ocean. The consequences of lower sea ice flux through Fram Strait on ocean dynamics and primary production in the Greenland Sea remain unknown. By using the most recent 16 years (2003–2018) of satellite imagery available and hydrographic in situ observations, the role of exported Arctic sea ice on water column stratification and phytoplankton production in the Greenland Sea is evaluated. Years with high Arctic sea ice flux through Fram Strait resulted in high sea ice concentration in the Greenland Sea, stronger water column stratification, and an earlier spring phytoplankton bloom associated with high primary production levels. Similarly, years with low Fram Strait ice flux were associated with a weak water column stratification and a delayed phytoplankton spring bloom. This work emphasizes that sea ice and phytoplankton production in subarctic “outflow seas” can be strongly influenced by changes occurring in the Arctic Ocean.

     
    more » « less
  5. Abstract

    Recent climate change has caused declines in ice coverage which have lengthened the open water season in the Arctic and increased access to resources and shipping routes. These changes have resulted in more vessel activity in seasonally ice-covered regions. While traffic is increasing in the ice-free season, the amount of vessel activity in the marginal ice zone (ice concentration 15–80%) or in pack ice (>80% concentration) remains unclear. Understanding patterns of vessel activities in ice is important given increased safety challenges and environmental impacts. Here, we couple high-resolution ship tracking information with sea ice thickness and concentration data to quantify vessel activity in ice-covered areas of the Pacific Arctic (northern Bering, Chukchi, and western Beaufort Seas). This region is a geo-strategically critical area that contains globally important commercial fisheries and serves as a corridor for Arctic access for wildlife and vessels. We find that vessel traffic in the marginal ice zone is widely distributed across the study area while vessel traffic in pack ice is concentrated along known shipping routes and in areas of natural resource development. Of the statistically significant relationships between vessel traffic and both sea ice concentration and thickness, over 99% are negative, indicating that increasing sea ice is associated with decreasing vessel traffic on a monthly time scale. Furthermore, there is substantial vessel traffic in areas of high concentration for bowhead whales (Balaena mysticetus), and traffic in these areas increased four-fold during the study period. Fishing vessels dominate vessel traffic at low ice concentrations, but vessels categorized as Other, likely icebreakers, are the most common vessel type in pack ice. These findings indicate that vessel traffic in areas of ice coverage is influenced by distant policy and resource development decisions which should be taken into consideration when trying to predict future vessel-ice interactions in a changing climate.

     
    more » « less