skip to main content


Title: Autohydrolysis of Diglycine‐Activated Succinic Esters Boosts Cellular Uptake
Abstract

Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester‐containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine‐activated succinic esters turns the nanofibers of the conjugates of succinic ester and self‐assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine‐activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a “U‐turn” of diglycine favors intramolecular hydrolysis of diglycine‐activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine‐activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.

 
more » « less
PAR ID:
10449170
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
135
Issue:
36
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rapid cellular uptake of synthetic molecules remains a challenge, and the motif frequently employed to generate prodrugs, succinic ester, unfortunately lowers the efficacy of the desired drugs due to their slow ester hydrolysis and low cell entry. Here we show that succinic ester‐containing diglycine drastically boosts the cellular uptake of supramolecular assemblies or prodrugs. Specifically, autohydrolysis of the diglycine‐activated succinic esters turns the nanofibers of the conjugates of succinic ester and self‐assembling motif into nanoparticles for fast cellular uptake. The autohydrolysis of diglycine‐activated succinic esters and drug conjugates also restores the efficacy of the drugs. 2D nuclear magnetic resonance (NMR) suggests that a “U‐turn” of diglycine favors intramolecular hydrolysis of diglycine‐activated succinic esters to promote autohydrolysis. As an example of rapid autohydrolysis of diglycine‐activated succinic esters for instant cellular uptake, this work illustrates a nonenzymatic bond cleavage approach to develop effective therapeutics for intracellular targeting.

     
    more » « less
  2. Abstract

    Antimicrobial drug resistance demands novel approaches for improving the efficacy of antibiotics, especially against Gram‐negative bacteria. Herein, we report that conjugating a diglycine (GG) to an antibiotic prodrug drastically accelerates intrabacterial ester‐bond hydrolysis required for activating the antibiotic. Specifically, the attachment of GG to chloramphenicol succinate (CLsu) generates CLsuGG, which exhibits about an order of magnitude higher inhibitory efficacy than CLsu againstEscherichia coli. Further studies reveal that CLsuGG undergoes rapid hydrolysis, catalyzed by intrabacterial esterases (e.g., BioH and YjfP), to generate chloramphenicol (CL) inE. coli. Importantly, the conjugate exhibits lower cytotoxicity to bone marrow stromal cells than CL. Structural analogues of CLsuGG indicate that the conjugation of GG to an antibiotic prodrug is an effective strategy for accelerating enzymatic prodrug hydrolysis and enhancing the antibacterial efficacy of antibiotics.

     
    more » « less
  3. Abstract

    Antimicrobial drug resistance demands novel approaches for improving the efficacy of antibiotics, especially against Gram‐negative bacteria. Herein, we report that conjugating a diglycine (GG) to an antibiotic prodrug drastically accelerates intrabacterial ester‐bond hydrolysis required for activating the antibiotic. Specifically, the attachment of GG to chloramphenicol succinate (CLsu) generates CLsuGG, which exhibits about an order of magnitude higher inhibitory efficacy than CLsu againstEscherichia coli. Further studies reveal that CLsuGG undergoes rapid hydrolysis, catalyzed by intrabacterial esterases (e.g., BioH and YjfP), to generate chloramphenicol (CL) inE. coli. Importantly, the conjugate exhibits lower cytotoxicity to bone marrow stromal cells than CL. Structural analogues of CLsuGG indicate that the conjugation of GG to an antibiotic prodrug is an effective strategy for accelerating enzymatic prodrug hydrolysis and enhancing the antibacterial efficacy of antibiotics.

     
    more » « less
  4. Abstract

    By combining tandem asymmetric gold catalysis and subsequent stereoconvergent hydrolysis of enol ester in a one‐pot process, hydroxylated propargylic esters are converted into chiral β‐oxygenated ketones with mostly good enantiomeric ratios and in largely good to excellent yields. The product chiral center is formed via stereoselective cyclization of a hydroxylated allenyl ester intermediate, which is enabled by asymmetric gold‐ligand cooperation.

     
    more » « less
  5. Abstract

    Amphiphilic drugs are molecular drugs or drug conjugates possessing both hydrophilic and lipophilic properties. Representative amphiphilic drugs are composed of a pharmaceutical payload, a linker, and an appropriate amphiphilic modification. The physicochemical properties of amphiphilic drugs can be tailored by structure‐based engineering, which ultimately determine the drug molecules’ self‐assemble ability, bioavailability, protein binding, membrane anchoring, organ and intracellular distributions, side effects, and biological efficacy. Unlike the traditional carrier‐assistant drug delivery system, many of the amphiphilic drugs are carrier‐free and can self‐deliver to target sites/cells and access intracellular organelles without an external delivery carrier. This is achieved by molecular designs that control the delivery pathways of amphiphilic drugs at organ/tissue, cellular, and intracellular levels. In this review the recent advances in self‐delivery amphiphilic drugs and vaccines are highlighted, with emphasis on the underlying design principles and emerging applications.

     
    more » « less