skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of endozoochory in upland geese Chloephaga picta and white‐bellied seedsnipes Attagis malouinus in sub‐Antarctic Chile
Abstract Birds are known to act as potential vectors for the exogenous dispersal of bryophyte diaspores. Given the totipotency of vegetative tissue of many bryophytes, birds could also contribute to endozoochorous bryophyte dispersal. Research has shown that fecal samples of the upland goose (Chloephaga picta) and white‐bellied seedsnipe (Attagis malouinus) contain bryophyte fragments. Although few fragments from bird feces have been known to regenerate, the evidence for the viability of diaspores following passage through the bird intestinal tract remains ambiguous. We evaluated the role of endozoochory in these same herbivorous and sympatric bird species in sub‐Antarctic Chile. We hypothesized that fragments of bryophyte gametophytes retrieved from their feces are viable and capable of regenerating new plant tissue. Eleven feces disk samples containing undetermined moss fragments fromC. picta(N = 6) andA. malouinus(N = 5) and six moss fragment samples from wild‐collected mosses (Conostomumtetragonum,Syntrichiarobusta, andPolytrichumstrictum) were grown ex situ in peat soil and in vitro using a agar Gamborg medium. After 91 days, 20% of fragments fromA. malouinusfeces, 50% of fragments fromC. pictafeces, and 67% of propagules from wild mosses produced new growth. The fact that moss diaspores remained viable and can regenerate under experimental conditions following the passage through the intestinal tracts of these robust fliers and altitudinal and latitudinal migrants suggests that sub‐Antarctic birds might play a role in bryophyte dispersal. This relationship may have important implications in the way bryophytes disperse and colonize habitats facing climate change.  more » « less
Award ID(s):
1658651
PAR ID:
10449184
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
11
Issue:
14
ISSN:
2045-7758
Page Range / eLocation ID:
p. 9191-9197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PremisePhylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. MethodsWe employed diverse likelihood‐based analyses to infer large‐scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. ResultsOverall land‐plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four‐taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion ofRNAedit sites restores cases of unexpected non‐monophyly to monophyly forTakakiaand two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophicAneurabut notBuxbaumia. Plastid genome structure is nearly invariant across bryophytes, but thetufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. ConclusionsA common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavilyRNA‐edited taxa. TheBuxbaumiaplastome lacks hallmarks of relaxed selection found in mycoheterotrophicAneura. Autotrophic bryophyte plastomes, includingBuxbaumia, hardly vary in overall structure. 
    more » « less
  2. Stream bryophytes (mosses and liverworts) are widely recognized as important macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient cycling, remains understudied. Hubbard Brook Experimental Forest in New Hampshire, USA, contains some of the most extensively researched streams in the world, yet few studies mention their bryophytes. Perhaps this is because early estimates place bryophyte coverage in these streams at an insignificant 2%. However, data from 2019 show that contemporary coverage ranges from 4 to 40% among streams. To investigate how stream bryophyte cover may be changing over time and influencing stream nutrient stocks, we conducted field surveys, measured the mass of organic and inorganic bryophyte contents, and quantified nutrient uptake with bottle incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte coverage with estimates of C, P, and N stocks and fluxes. From our 2022 field surveys, we found that median bryophyte coverage varied across streams in the same catchment (0–41.4%) and shifted from just 3 y prior. We estimate that these bryophyte mats stored between 14 and 414 g of organic matter per m2 of stream in the form of live biomass and captured particulates. Within 12 h of light incubation, 35 out of 36 bryophyte clump samples sorbed peak historical water-column concentrations of PO43– as measured in the Hubbard Brook stream chemistry record. In Bear Brook, our scaled estimate of bryophyte mat NO3– uptake (2.3 g N/y) constitutes a substantial portion of previously estimated whole-stream NO3– uptake (12 g N/y). Cumulatively, our data demonstrate that bryophytes and their associated mineral substrates and biota—known as the bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may contribute significantly to interannual variability in stream nutrient concentrations within nutrient-poor streams, especially in climate-sensitive regions. 
    more » « less
  3. Stream bryophytes (mosses and liverworts) are widely recognized as important macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient cycling, remains understudied. Hubbard Brook Experimental Forest contains some of the most extensively researched streams in the world, yet few studies mention their bryophytes. Perhaps this is because early estimates place stream bryophyte coverage at an insignificant 2%. However, data from 2019 show that contemporary coverage ranges from 4%–40% among streams. To investigate how stream bryophyte cover may be changing over time and influencing stream nutrient stocks, we conducted field surveys, measured organic and inorganic mass contents of bryophytes, and quantified nutrient uptake with bottle incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte coverage with estimates of carbon, phosphorus, and nitrogen stocks and fluxes. From our 2022 field surveys, we found that median bryophyte coverage can vary greatly across streams in the same catchment (0%–41.4%) and can also shift from just three years prior. We estimate that these bryophyte mats store between 14–414 g of organic matter per m2 of stream in the form of live biomass and captured particulates. Out of 36 bryophyte clump samples, 35 sorbed peak historical water column concentrations of PO43- measured within the Hubbard Brook stream chemistry record within 12 hours of light incubation. In Bear Brook, our scaled estimate of bryophyte mat nitrate uptake (2.3 g N y-1) constitutes a substantial portion of previously estimated whole-stream nitrate uptake (12 g N y-1). Cumulatively, our data demonstrates that bryophytes and their associated mineral substrates and biota—known as the bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may contribute significantly to interannual variability in stream nutrient concentrations within nutrient-poor streams, especially in climate-sensitive regions. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Abstract Drylands comprise 45% of Earth’s land area and contain ecologically critical soil surface communities known as biocrusts. Biocrusts are composed extremotolerant organisms including cyanobacteria, microfungi, algae, lichen, and bryophytes. Fungi in biocrusts help aggregate these communities and may form symbiotic relationships with nearby plants. Climate change threatens biocrusts, particularly moss biocrusts, but its effects on the biocrust mycobiome remain unknown. Here, we performed a culture-dependent and metabarcoding survey of the moss biocrust mycobiome across an aridity gradient to determine whether local climate influences fungal community composition. As the local aridity index increased, fungal communities exhibited greater homogeneity in beta diversity. At arid and hyper-arid sites, communities shifted toward more extremotolerant taxa. We identified a significant proportion of fungal reads and cultures from biocrusts that could not be classified.Rhodotorula mucilaginosaandR. paludigenawere significantly enriched following surface sterilization of healthy biocrust mosses. This aligns with their known roles as plant endophytes. We also observed septate endophyte colonization in the photosynthetic tissues of mosses from arid climates. Collectively, these results suggest that the biocrust mycobiome will undergo significant shifts in diversity due to climate change, favoring extremotolerant taxa as climate conditions intensify. The survey results also highlight taxa with the potential to serve as bioinoculants for enhancing biocrust resilience to climate change. These findings offer valuable insights into the potential impacts of climate change on drylands and provide crucial information for biocrust conservation. 
    more » « less
  5. Summary Recent studies have shown that correlations between chromatin modifications and transcription vary among eukaryotes. This is the case for marked differences between the chromatin of the mossPhyscomitrium patensand the liverwortMarchantia polymorpha. Mosses and liverworts diverged from hornworts, altogether forming the lineage of bryophytes that shared a common ancestor with land plants. We aimed to describe chromatin in hornworts to establish synapomorphies across bryophytes and approach a definition of the ancestral chromatin organization of land plants.We used genomic methods to define the 3D organization of chromatin and map the chromatin landscape of the model hornwortAnthoceros agrestis.We report that nearly half of the hornwort transposons were associated with facultative heterochromatin and euchromatin and formed the center of topologically associated domains delimited by protein coding genes. Transposons were scattered across autosomes, which contrasted with the dense compartments of constitutive heterochromatin surrounding the centromeres in flowering plants.Most of the features observed in hornworts are also present in liverworts or in mosses but are distinct from flowering plants. Hence, the ancestral genome of bryophytes was likely a patchwork of units of euchromatin interspersed within facultative and constitutive heterochromatin. We propose this genome organization was ancestral to land plants. 
    more » « less