skip to main content


Title: Temperature Gradients and Inversions in a Forested Cascade Range Basin: Synoptic‐ to Local‐Scale Controls
Abstract

Cold‐air pooling and associated air temperature inversions are important features of mountain landscapes, but incomplete understanding of their controlling factors hinders prediction of how they may mediate potential future climate changes at local scales. We evaluated how topographic and forest canopy effects on insolation and local winds altered the expression of synoptic‐scale meteorological forcing on near‐surface air temperature inversions and how these effects varied by time of day, season, and spatial scale. Using ~13 years of hourly temperature measurements in forest canopy openings and under the forest canopy at the H.J. Andrews Experimental Forest in the western Cascade Range of Oregon (USA), we calculated air temperature gradients at the basin scale (high vs. low elevation) and at the cross‐valley scale for two transects that differed in topography and forest canopy cover. ERA5 and NCEP NCAR R1 reanalysis data were used to evaluate regional‐scale conditions. Basin and cross‐valley temperature inversions were frequent, particularly in winter and often persisted for several days. Nighttime inversions were more frequent at the cross‐valley scale but displayed the same intra‐annual pattern at the basin and regional scales, becoming most frequent in summer. Nighttime temperature gradients at basin and cross‐valley scales responded similarly to regional‐scale controls, particularly free‐air temperature gradients, despite differences in topography and forest cover. In contrast, the intra‐annual pattern of daytime inversions differed between the basin and cross‐valley scales and between the two cross‐valley transects, implying that topographic and canopy effects on insolation and local winds were key controls at these scales.

 
more » « less
Award ID(s):
2025755
PAR ID:
10449306
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
125
Issue:
23
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cold‐air pooling is an important topoclimatic process that creates temperature inversions with the coldest air at the lowest elevations. Incomplete understanding of sub‐canopy spatiotemporal cold‐air pooling dynamics and associated ecological impacts hinders predictions and conservation actions related to climate change and cold‐dependent species and functions. To determine if and how cold‐air pooling influences forest composition, we characterized the frequency, strength, and temporal dynamics of cold‐air pooling in the sub‐canopy at local to regional scales in New England, USA. We established a network of 48 plots along elevational transects and continuously measured sub‐canopy air temperatures for 6–10 months (depending on site). We then estimated overstory and understory community temperature preferences by surveying tree composition in each plot and combining these data with known species temperature preferences. We found that cold‐air pooling was frequent (19–43% seasonal occurrences) and that sites with the most frequent inversions displayed inverted forest composition patterns across slopes with more cold‐adapted species, namely conifers, at low instead of high elevations. We also observed both local and regional variability in cold‐air pooling dynamics, revealing that while cold‐air pooling is common, it is also spatially complex. Our study, which uniquely focused on broad spatial and temporal scales, has revealed some rarely reported cold‐air pooling dynamics. For instance, we discovered frequent and strong temperature inversions that occurred across seasons and in some locations were most frequent during the daytime, likely affecting forest composition. Together, our results show that cold‐air pooling is a fundamental ecological process that requires integration into modeling efforts predicting future forest vegetation patterns under climate change, as well as greater consideration for conservation strategies identifying potential climate refugia for cold‐adapted species.

     
    more » « less
  2. Abstract

    Mountain breezes, including katabatic and anabatic flows, and temperature inversions are common features of forested mountain landscapes. However, the effects of mountain breezes on moisture transport in forests and implications for regional climate change are not well understood. A detailed, instrumented study was conducted from July to September 2012 in an even‐aged conifer forest in the Oregon Cascade Range to investigate how temperature profiles within the forest canopy influenced atmospheric surface layer processes that ventilate the forest. Subcanopy inversion strength has a bimodal relationship to subcanopy wind speed and moisture flux from the forest. On days with relatively modest heating of the top of the canopy and weak subcanopy inversions, above canopy winds more efficiently mix subcanopy air, leading to greater than average vertical moisture flux and weaker than average along‐slope, subcanopy water vapor advection. On days with strong heating of the top of the canopy and a strong subcanopy inversion, vertical moisture flux is suppressed, and daytime downslope winds are stronger than average under the canopy. Increased downslope winds lead to increased downslope transport of water vapor, carbon dioxide, and other scalars under the canopy. Increasing summer vapor pressure deficit in the Pacific Northwest will enhance both processes: vertical moisture transport by mountain breezes when subcanopy inversions are weak and downslope water vapor transport when subcanopy inversions are strong. These mountain breeze dynamics have implications for climate refugia in forested mountains, forest plantations, and other forested regions with a similar canopy structure and regional atmospheric forcings.

     
    more » « less
  3. Abstract

    Macroclimate drives vegetation distributions, but fine‐scale topographic variation can generate microclimate refugia for plant persistence in unsuitable areas. However, we lack quantitative descriptions of topography‐driven microclimatic variation and how it shapes forest structure, diversity, and composition. We hypothesized that topographic variation and the presence of the forest overstory cause spatiotemporal microclimate variation affecting tree performance, causing forest structure, diversity, and composition to vary with topography and microclimate, and topography and the overstory to buffer microclimate. In a 20.2‐ha inventory plot in the North American Great Plains, we censused woody stems ≥1 cm in diameter and collected detailed topographic and microclimatic data. Across 59‐m of elevation, microclimate covaried with topography to create a sharp desiccation gradient, and topography and the overstory buffered understory microclimate. The magnitude of microclimatic variation mirrored that of regional‐scale variation: with increasing elevation, there was a decrease in soil moisture corresponding to the difference across ~2.1° of longitude along the east‐to‐west aridity gradient and an increase in air temperature corresponding to the difference across ~2.7° of latitude along the north‐to‐south gradient. More complex forest structure and higher diversity occurred in moister, less‐exposed habitats, and species occupied distinct topographic niches. Our study demonstrates how topographic and microclimatic gradients structure forests in putative climate‐change refugia, by revealing ecological processes enabling populations to be maintained during periods of unfavorable macroclimate.

     
    more » « less
  4. Abstract

    Coastal Santa Barbara (SB) County in Southern California, characterized by a Mediterranean climate and complex topography, is a region prone to downslope windstorms that create critical fire weather conditions and rapidly spread wildfires. The Santa Ynez Mountains, oriented from east to west, rise abruptly from the coast, separating air masses from the ocean and the Santa Ynez Valley. The juxtaposition of these geographic features generates spatiotemporally variable wind regimes. This study analyzes diurnal‐to‐seasonal wind cycles and extremes in this region using hourly data from eight weather stations and four buoys for the period 1998–2019. Data from a vertical wind profiler at the Santa Barbara airport in Goleta, CA was extracted from August 2016 to September 2020. Air temperature, dew point temperature, and the Fosberg fire weather index are examined at land stations. We show that cycles in wind speed vary spatiotemporally; mountain (valley and coastal) stations exhibit a pronounced semiannual (annual) cycle, and wind maxima is observed during the evening (afternoon) at mountain (valley and coastal) stations. Differences in wind speed percentiles were evident among stations, particularly at and above the 75th percentile. Strong winds recorded at buoys were significantly correlated (betweenr = 0.3–0.5) to land stations. However, cross‐correlational analysis did not reveal any temporal lags between mountain stations and buoys. Distributions of temperature and dew point during extreme winds differed between east and west mountain stations. Significant fire weather conditions were most frequent at mountain stations in Refugio and Montecito, with 5% occurrence in the spring and over 3% occurrence in fall. Weaker summertime winds lowered fire weather conditions at Montecito in the summer.

     
    more » « less
  5. Abstract

    Terrestrial gradients in the oxygen isotopic composition of meteoric water (δ18O), as reconstructed through proxies, reflect characteristics of ancient hydrologic conditions. These gradients are primarily influenced by the atmospheric transport of water vapor and the balance of precipitation and evapotranspiration, which are linked to climate and topography. We incorporate these effects into a one‐dimensional model that predicts the spatial evolution ofδ18Obased on local topography and the regional water‐energy budget. Specifically, we build on existing reactive transport models by incorporating parameterizations of orographic precipitation and energetic constraints on evapotranspiration following the Budyko water balance framework. We test our model on three modern transects that represent topographically distinct environments. These are the Amazon Basin (lowlands), the Cascade Range (mountains), and the eastern Himalayan Range (lowlands and mountains). Comparisons among these gradients demonstrate that the topographic regime determines how sensitive isotope records are to hydroclimate evolution. As a result, isotope records differentially express signatures of topography and the regional water balance, and we present a quantitative framework to predict this trade‐off. Finally, we link these effects to climate evolution and discuss how our model may help disentangle topographic and climatic signals through Earth history.

     
    more » « less