Abstract Cold‐air pooling is an important topoclimatic process that creates temperature inversions with the coldest air at the lowest elevations. Incomplete understanding of sub‐canopy spatiotemporal cold‐air pooling dynamics and associated ecological impacts hinders predictions and conservation actions related to climate change and cold‐dependent species and functions. To determine if and how cold‐air pooling influences forest composition, we characterized the frequency, strength, and temporal dynamics of cold‐air pooling in the sub‐canopy at local to regional scales in New England, USA. We established a network of 48 plots along elevational transects and continuously measured sub‐canopy air temperatures for 6–10 months (depending on site). We then estimated overstory and understory community temperature preferences by surveying tree composition in each plot and combining these data with known species temperature preferences. We found that cold‐air pooling was frequent (19–43% seasonal occurrences) and that sites with the most frequent inversions displayed inverted forest composition patterns across slopes with more cold‐adapted species, namely conifers, at low instead of high elevations. We also observed both local and regional variability in cold‐air pooling dynamics, revealing that while cold‐air pooling is common, it is also spatially complex. Our study, which uniquely focused on broad spatial and temporal scales, has revealed some rarely reported cold‐air pooling dynamics. For instance, we discovered frequent and strong temperature inversions that occurred across seasons and in some locations were most frequent during the daytime, likely affecting forest composition. Together, our results show that cold‐air pooling is a fundamental ecological process that requires integration into modeling efforts predicting future forest vegetation patterns under climate change, as well as greater consideration for conservation strategies identifying potential climate refugia for cold‐adapted species.
more »
« less
Temperature Gradients and Inversions in a Forested Cascade Range Basin: Synoptic‐ to Local‐Scale Controls
Abstract Cold‐air pooling and associated air temperature inversions are important features of mountain landscapes, but incomplete understanding of their controlling factors hinders prediction of how they may mediate potential future climate changes at local scales. We evaluated how topographic and forest canopy effects on insolation and local winds altered the expression of synoptic‐scale meteorological forcing on near‐surface air temperature inversions and how these effects varied by time of day, season, and spatial scale. Using ~13 years of hourly temperature measurements in forest canopy openings and under the forest canopy at the H.J. Andrews Experimental Forest in the western Cascade Range of Oregon (USA), we calculated air temperature gradients at the basin scale (high vs. low elevation) and at the cross‐valley scale for two transects that differed in topography and forest canopy cover. ERA5 and NCEP NCAR R1 reanalysis data were used to evaluate regional‐scale conditions. Basin and cross‐valley temperature inversions were frequent, particularly in winter and often persisted for several days. Nighttime inversions were more frequent at the cross‐valley scale but displayed the same intra‐annual pattern at the basin and regional scales, becoming most frequent in summer. Nighttime temperature gradients at basin and cross‐valley scales responded similarly to regional‐scale controls, particularly free‐air temperature gradients, despite differences in topography and forest cover. In contrast, the intra‐annual pattern of daytime inversions differed between the basin and cross‐valley scales and between the two cross‐valley transects, implying that topographic and canopy effects on insolation and local winds were key controls at these scales.
more »
« less
- Award ID(s):
- 2025755
- PAR ID:
- 10449306
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 125
- Issue:
- 23
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Mountain breezes, including katabatic and anabatic flows, and temperature inversions are common features of forested mountain landscapes. However, the effects of mountain breezes on moisture transport in forests and implications for regional climate change are not well understood. A detailed, instrumented study was conducted from July to September 2012 in an even‐aged conifer forest in the Oregon Cascade Range to investigate how temperature profiles within the forest canopy influenced atmospheric surface layer processes that ventilate the forest. Subcanopy inversion strength has a bimodal relationship to subcanopy wind speed and moisture flux from the forest. On days with relatively modest heating of the top of the canopy and weak subcanopy inversions, above canopy winds more efficiently mix subcanopy air, leading to greater than average vertical moisture flux and weaker than average along‐slope, subcanopy water vapor advection. On days with strong heating of the top of the canopy and a strong subcanopy inversion, vertical moisture flux is suppressed, and daytime downslope winds are stronger than average under the canopy. Increased downslope winds lead to increased downslope transport of water vapor, carbon dioxide, and other scalars under the canopy. Increasing summer vapor pressure deficit in the Pacific Northwest will enhance both processes: vertical moisture transport by mountain breezes when subcanopy inversions are weak and downslope water vapor transport when subcanopy inversions are strong. These mountain breeze dynamics have implications for climate refugia in forested mountains, forest plantations, and other forested regions with a similar canopy structure and regional atmospheric forcings.more » « less
-
Abstract An issue of global concern is how climate change forcing is transmitted to ecosystems. Forest ecosystems in mountain landscapes may demonstrate buffering and perhaps decoupling of long‐term rates of temperature change, because vegetation, topography, and local winds (e.g., cold air pooling) influence temperature and potentially create microclimate refugia (areas which are relatively protected from climate change). We tested these ideas by comparing 45‐year regional rates of air temperature change to unique temporal and spatial air temperature records in the understory of regionally representative stable old forest at the H.J. Andrews Experimental Forest, Oregon, USA. The 45‐year seasonal patterns and rates of warming were similar throughout the forested landscape and matched regional rates observed at 88 standard meteorological stations in Oregon and Washington, indicating buffering, but not decoupling of long‐term climate change rates. Consideration of the energy balance explains these results: while shading and airflows produce spatial patterns of temperature, these processes do not counteract global increases in air temperature driven by increased downward, longwave radiation forced by increased anthropogenic greenhouse gases in the atmosphere. In some months, the 45‐year warming in the forest understory equaled or exceeded spatial differences of air temperature between the understory and the canopy or canopy openings and was comparable to temperature change over 1,000 m elevation, while in other months there has been little change. These findings have global implications because they indicate that microclimate refugia are transient, even in this forested mountain landscape.more » « less
-
Abstract Coastal Santa Barbara (SB) County in Southern California, characterized by a Mediterranean climate and complex topography, is a region prone to downslope windstorms that create critical fire weather conditions and rapidly spread wildfires. The Santa Ynez Mountains, oriented from east to west, rise abruptly from the coast, separating air masses from the ocean and the Santa Ynez Valley. The juxtaposition of these geographic features generates spatiotemporally variable wind regimes. This study analyzes diurnal‐to‐seasonal wind cycles and extremes in this region using hourly data from eight weather stations and four buoys for the period 1998–2019. Data from a vertical wind profiler at the Santa Barbara airport in Goleta, CA was extracted from August 2016 to September 2020. Air temperature, dew point temperature, and the Fosberg fire weather index are examined at land stations. We show that cycles in wind speed vary spatiotemporally; mountain (valley and coastal) stations exhibit a pronounced semiannual (annual) cycle, and wind maxima is observed during the evening (afternoon) at mountain (valley and coastal) stations. Differences in wind speed percentiles were evident among stations, particularly at and above the 75th percentile. Strong winds recorded at buoys were significantly correlated (betweenr = 0.3–0.5) to land stations. However, cross‐correlational analysis did not reveal any temporal lags between mountain stations and buoys. Distributions of temperature and dew point during extreme winds differed between east and west mountain stations. Significant fire weather conditions were most frequent at mountain stations in Refugio and Montecito, with 5% occurrence in the spring and over 3% occurrence in fall. Weaker summertime winds lowered fire weather conditions at Montecito in the summer.more » « less
-
Abstract Topography affects abiotic conditions which can influence the structure, function and dynamics of ecological communities. An increasing number of studies have demonstrated biological consequences of fine‐scale topographic heterogeneity but we have a limited understanding of how these effects depend on the climate context.We merged high‐resolution (1 m2) data on topography and canopy height derived from airborne lidar with ground‐based data from 15 forest plots in Puerto Rico distributed along a precipitation gradient spanningc. 800–3,500 mm/year. Ground‐based data included species composition, estimated above‐ground biomass (AGB), and two key functional traits (wood density and leaf mass per area, LMA) that reflect resource‐use strategies and a trade‐off between hydraulic safety and hydraulic efficiency. We used hierarchical Bayesian models to evaluate how the interaction between topography × climate is related to metrics of forest structure (i.e. canopy height and AGB), as well as taxonomic and functional alpha‐ and beta‐diversity.Fine‐scale topography (characterized with the topographic wetness index, TWI) significantly affected forest structure and the strength (and in some cases direction) of these effects varied across the precipitation gradient. In all plots, canopy height increased with topographic wetness but the effect was much stronger in dry compared to wet forest plots. In dry forest plots, topographically wetter microsites also had higher levels of AGB but in wet forest plots, topographically drier microsites had higher AGB.Fine‐scale topography influenced functional composition but had only weak or non‐significant effects on taxonomic and functional alpha‐ and beta‐diversity. For instance, community‐weighted wood density followed a similar pattern to AGB across plots. We also found a marginally significant association between variation of wood density and topographic heterogeneity that depended on climate context.Synthesis. The effects of fine‐scale topographic heterogeneity on tropical forest structure and composition depend on the climate context. Our study demonstrates how a stronger integration of topographic heterogeneity across precipitation gradients could improve estimates of forest structure and biomass, and may provide insight to the ways that topography might mediate species responses to drought and climate change.more » « less
An official website of the United States government
