skip to main content


Title: Separating and quantifying the distinct impacts of El Niño and sudden stratospheric warmings on North Atlantic and Eurasian wintertime climate
Abstract

Sudden stratospheric warmings (SSWs) significantly influence Eurasian wintertime climate. The El Niño phase of the El Niño–Southern Oscillation (ENSO) also affects climate in that region through tropospheric and stratospheric pathways, including increased SSW frequency. However, most SSWs are unrelated to El Niño, and their importance compared to other El Niño pathways remains to be quantified. We here contrast these two sources of variability using two 200‐member ensembles of 1‐year integrations of the Whole Atmosphere Community Climate Model, one ensemble with prescribed El Niño sea surface temperatures (SSTs) and one with neutral‐ENSO SSTs. We form composites of wintertime climate anomalies, with and without SSWs, in each ensemble and contrast them to a basic state represented by neutral‐ENSO winters without SSWs. We find that El Niño and SSWs both result in negative North Atlantic Oscillation anomalies and have comparable impacts on European precipitation, but SSWs cause larger Eurasian cooling. Our results have implications for predictability of wintertime Eurasian climate.

 
more » « less
NSF-PAR ID:
10449346
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Atmospheric Science Letters
Volume:
20
Issue:
7
ISSN:
1530-261X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The joint influence of the stratospheric quasi‐biennial oscillation (QBO) and the El Niño Southern Oscillation (ENSO) on the polar vortex, subtropical westerly jets (STJs), and wave patterns during boreal winter is investigated in 40 years (1979–2018) of monthly mean ERA‐Interim reanalyses. The method of Wallace et al. (1993),https://doi.org/10.1175/15200469(1993)050<1751:ROTESQ>2.0.CO;2is used to conduct a QBO phase angle sweep. QBO westerly (W) and easterly (E) composites are then segregated by the phase of ENSO. Two pathways are described by which the QBO mean meridional circulation (MMC) influences the northern winter hemisphere. The “stratospheric pathway” modulates stratospheric planetary wave absorption via the Holton‐Tan mechanism. The “tropospheric pathway” modulates the tropical and subtropical upper troposphere and lower stratosphere. QBO MMC anomalies exhibit a checkerboard pattern in temperature and arched structures in zonal wind which extend into midlatitudes, and are stronger on the winter side. During QBO W, the polar vortex and STJs are enhanced. QBO signals in the polar vortex are amplified during La Niña. During El Niño and QBO W, the strongest STJs occur, and a warm pole/wave two pattern is found. During El Niño and QBO E, a trough is found over Eurasia and a ridge over the North Atlantic, in a wave one pattern. El Niño diminishes QBO anomalies in the tropical stratosphere and reduces the poleward extent and amplitude of the QBO MMC, thereby influencing the stratospheric pathway. Effects on the boreal winter hemisphere are attributed to the combined influence of the QBO and ENSO via both pathways.

     
    more » « less
  2. Abstract

    Studies have indicated that North Pacific sea surface temperature (SST) variability can significantly modulate El Niño–Southern Oscillation (ENSO), but there has been little effort to put extratropical–tropical interactions into the context of historical events. To quantify the role of the North Pacific in pacing the timing and magnitude of observed ENSO, we use a fully coupled climate model to produce an ensemble of North Pacific Ocean–Global Atmosphere (nPOGA) SST pacemaker simulations. In nPOGA, SST anomalies are restored back to observations in the North Pacific (>15°N) but are free to evolve throughout the rest of the globe. We find that the North Pacific SST has significantly influenced observed ENSO variability, accounting for approximately 15% of the total variance in boreal fall and winter. The connection between the North and tropical Pacific arises from two physical pathways: 1) a wind–evaporation–SST (WES) propagating mechanism, and 2) a Gill-like atmospheric response associated with anomalous deep convection in boreal summer and fall, which we refer to as the summer deep convection (SDC) response. The SDC response accounts for 25% of the observed zonal wind variability around the equatorial date line. On an event-by-event basis, nPOGA most closely reproduces the 2014/15 and the 2015/16 El Niños. In particular, we show that the 2015 Pacific meridional mode event increased wind forcing along the equator by 20%, potentially contributing to the extreme nature of the 2015/16 El Niño. Our results illustrate the significant role of extratropical noise in pacing the initiation and magnitude of ENSO events and may improve the predictability of ENSO on seasonal time scales.

     
    more » « less
  3. Abstract

    The Arctic stratospheric polar vortex is an important driver of winter weather and climate variability and predictability in North America and Eurasia, with a downward influence that on average projects onto the North Atlantic Oscillation (NAO). While tropospheric circulation anomalies accompanying anomalous vortex states display substantial case‐by‐case variability, understanding the full diversity of the surface signatures requires larger sample sizes than those available from reanalyses. Here, we first show that a large ensemble of seasonal hindcasts realistically reproduces the observed average surface signatures for weak and strong vortex winters and produces sufficient spread for single ensemble members to be considered as alternative realizations. We then use the ensemble to analyze the diversity of surface signatures during weak and strong vortex winters. Over Eurasia, relatively few weak vortex winters are associated with large‐scale cold conditions, suggesting that the strength of the observed cold signature could be inflated due to insufficient sampling. For both weak and strong vortex winters, the canonical temperature pattern in Eurasia only clearly arises when North Atlantic sea surface temperatures are in phase with the NAO. Over North America, while the main driver of interannual winter temperature variability is the El Niño–Southern Oscillation (ENSO), the stratosphere can modulate ENSO teleconnections, affecting temperature and circulation anomalies over North America and downstream. These findings confirm that anomalous vortex states are associated with a broad spectrum of surface climate anomalies on the seasonal scale, which may not be fully captured by the small observational sample size.

     
    more » « less
  4. Abstract

    The Northern Hemisphere wintertime circulation response to volcanic eruptions has been explored extensively using general circulation models. In observations and some models, the response is characterized by an enhanced stratospheric polar vortex (SPV), a positive mode of the North Atlantic Oscillation (NAO), and warm surface temperatures during the winter over North America and Eurasia. A weak surface air temperature signal in previous studies has led to conflicting conclusions on the robustness of the response. Here, we use simulations with the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) of six nuclear war scenarios to present a new perspective on the connection between stratospheric aerosol heating, the SPV, and the surface temperature response. We show that stratospheric aerosol heating by soot is the primary contributor to the SPV response in nuclear war simulations, which is coupled to the troposphere and projects as a positive mode of the NAO at the surface. Winter warming is observed across northern Eurasia, albeit poleward of the response after volcanic eruptions. We compare the results to simulations of volcanic eruptions and find that observed Eurasian warming in the first winter after the 1963 Agung, 1982 El Chichón, and 1991 Pinatubo volcanic eruptions is simulated with the NCAR CAM5 climate model only when tropical sea surface temperatures, including the observed El Niño, are specified along with the volcanic aerosols. This suggests an undiagnosed tropospheric mechanism connecting the tropics and high latitudes, as without specifying sea surface temperatures, internal variability dominates the simulated winter warming response after historical volcanic eruptions.

     
    more » « less
  5. Abstract

    We examine the hypothesis that the observed connection between the stratospheric quasi-biennial oscillation (QBO) and the strength of the Madden–Julian oscillation (MJO) is modulated by the sea surface temperature (SST)—for example, by El Niño–Southern Oscillation (ENSO). A composite analysis shows that, globally, La Niña SSTs are remarkably similar to those that occur during the easterly phase of the QBO. A maximum covariance analysis suggests that MJO power and SST are strongly linked on both the ENSO time scale and the QBO time scale. We analyze simulations with a modified configuration of version 2 of the Community Earth System Model, with a high top and fine vertical resolution. The model is able to simulate ENSO, the QBO, and the MJO. The ocean-coupled version of the model simulates the QBO, ENSO, and MJO, but does not simulate the observed QBO–MJO connection. When driven with prescribed observed SST anomalies based on composites for QBO east and QBO west (QBOE and QBOW), however, the same atmospheric model produces a modest enhancement of MJO power during QBOE relative to QBOW, as observed. We explore the possibility that the SST anomalies are forced by the QBO itself. Indeed, composite Hovmöller diagrams based on observations show the propagation of QBO zonal wind anomalies all the way from the upper stratosphere to the surface. Also, subsurface ocean temperature composites reveal a similarity between the western Pacific and Indian Ocean subsurface signal between La Niña and QBOE.

     
    more » « less