skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials
Abstract

Stretchable electronics outperform existing rigid and bulky electronics and benefit a wide range of species, including humans, machines, and robots, whose activities are associated with large mechanical deformation and strain. Due to the nonstretchable nature of most electronic materials, in particular semiconductors, stretchable electronics are mostly realized through the strategies of architectural engineering to accommodate mechanical stretching rather than imposing strain into the materials directly. On the other hand, recent development of stretchable electronics by creating them entirely from stretchable elastomeric electronic materials, i.e., rubbery electronics, suggests a feasible a venue. Rubbery electronics have gained increasing interest due to the unique advantages that they and their associated manufacturing technologies have offered. This work reviews the recent progress in developing rubbery electronics, including the crucial stretchable elastomeric materials of rubbery conductors, rubbery semiconductors, and rubbery dielectrics. Thereafter, various rubbery electronics such as rubbery transistors, integrated electronics, rubbery optoelectronic devices, and rubbery sensors are discussed.

 
more » « less
NSF-PAR ID:
10449410
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
15
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The dissimilarity of material composition in existing stretchable electronics and biological organisms is a key bottleneck, still yet to be resolved, toward seamless integration between stretchable electronics and biological species. For instance, human or animal tissues and skins are fully made out of soft polymer species, while existing stretchable electronics are composed of rigid inorganic materials, either purely or partially. Soft stretchable electronics fully made out of polymeric materials with intrinsic softness and stretchability are sought after and therefore proposed to address this technical challenge. Here, rubbery electronics and sensors fully made out of stretchable polymeric materials including all‐polymer rubbery transistors, sensors, and sensory skin, which have similar material composition to biology, are reported. The fabricated all‐polymer rubbery transistors exhibit field‐effect mobility of 1.11 cm2V‐1s‐1and retain their transistor performance even under mechanical stretch of 30%. In addition, all‐polymer rubbery strain and temperature sensors are demonstrated with high gauge factor and good temperature sensing capability. Based on these all‐polymer rubbery electronics, an active‐matrix multiplexed sensory skin on a robotic hand is demonstrated to illustrate one of the applications.

     
    more » « less
  2. The development of intrinsically stretchable electronics poses great challenges in synthesizing elastomeric conductors, semiconductors and dielectric materials. While a wide range of approaches, from special macrostructural engineering to molecular synthesis, have been employed to afford stretchable devices, this review surveys recent advancements in employing various morphological and nanostructural control methods to impart mechanical flexibility and/or to enhance electrical properties. The focus will be on (1) embedding percolation networks of one-dimensional conductive materials such as metallic nanowires and carbon nanotubes in an elastomer matrix to accommodate large external deformation without imposing a large strain along the one-dimensional materials, (2) design strategies to achieve intrinsically stretchable semiconductor materials that include direct blending of semiconductors with elastomers and synthesizing semiconductor polymers with appropriate side chains, backbones, cross-linking networks, and flexible blocks, and (3) employing interpenetrating polymer networks, bottlebrush structures and introducing inclusions in stretchable polymeric dielectric materials to improve electrical performance. Moreover, intrinsically stretchable electronic devices based on these materials, such as stretchable sensors, heaters, artificial muscles, optoelectronic devices, transistors and soft humanoid robots, will also be described. Limitations of these approaches and measures to overcome them will also be discussed. 
    more » « less
  3. An intrinsically stretchable rubbery semiconductor with high mobility is critical to the realization of high-performance stretchable electronics and integrated devices for many applications where large mechanical deformation or stretching is involved. Here, we report fully rubbery integrated electronics from a rubbery semiconductor with a high effective mobility, obtained by introducing metallic carbon nanotubes into a rubbery semiconductor composite. This enhancement in effective carrier mobility is enabled by providing fast paths and, therefore, a shortened carrier transport distance. Transistors and their arrays fully based on intrinsically stretchable electronic materials were developed, and they retained electrical performances without substantial loss when subjected to 50% stretching. Fully rubbery integrated electronics and logic gates were developed, and they also functioned reliably upon mechanical stretching. A rubbery active matrix based elastic tactile sensing skin to map physical touch was demonstrated to illustrate one of the applications. 
    more » « less
  4. Abstract

    Recyclable and biodegradable microelectronics, i.e., “green” electronics, are emerging as a viable solution to the global challenge of electronic waste. Specifically, flexible circuit boards represent a prime target for materials development and increasing the utility of green electronics in biomedical applications. Circuit board substrates and packaging are good dielectrics, mechanically and thermally robust, and are compatible with microfabrication processes. Poly(octamethylene maleate (anhydride) citrate) (POMaC) – a citric acid-based elastomer with tunable degradation and mechanical properties – presents a promising alternative for circuit board substrates and packaging. Here, we report the characterization of Elastomeric Circuit Boards (ECBs). Synthesis and processing conditions were optimized to achieve desired degradation and mechanical properties for production of stretchable circuits. ECB traces were characterized and exhibited sheet resistance of 0.599 Ω cm−2, crosstalk distance of <0.6 mm, and exhibited stable 0% strain resistances after 1000 strain cycles to 20%. Fabrication of single layer and encapsulated ECBs was demonstrated.

     
    more » « less
  5. Abstract

    Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed.

     
    more » « less