skip to main content


Title: Cavity Optomechanical Sensing in the Nonlinear Saturation Limit
Abstract

Photonic sensors based upon high‐quality microcavities have found a wide variety of applications ranging from inertial sensing, electro‐ and magnetometry to chemical and biological sensing. These sensors have a dynamic range limited by the linewidth of the cavity mode transducing the input. This dynamic range not only determines the range of the signal strength that can be detected, but also affects the resilience of the sensor against large deteriorating external perturbations and shocks in a practical environment. Unfortunately, there is a general trade‐off between the detection sensitivity and the dynamic range, which undermines the performance of all microcavity‐based sensors. Here, an approach is proposed to extend the dynamic range significantly beyond the cavity linewidth limit by exploiting the periodic nature of the modulation signal, making measurements in the nonlinear transduction regime without degrading the detection sensitivity for weak signals. With a cavity optomechanical system, a dynamic range of over six times larger than the cavity linewidth is experimentally demonstrated, far beyond the conventional linear region of operation for such a sensor. This approach will help design microcavity‐based sensors to achieve high detection sensitivity and a large dynamic range at the same time, a crucial property for their use in a practical environment.

 
more » « less
NSF-PAR ID:
10449428
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
15
Issue:
9
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Temperature is one of the most fundamental physical properties to characterize various physical, chemical, and biological processes. Even a slight change in temperature could have an impact on the status or dynamics of a system. Thus, there is a great need for high-precision and large-dynamic-range temperature measurements. Conventional temperature sensors encounter difficulties in high-precision thermal sensing on the submicron scale. Recently, optical whispering-gallery mode (WGM) sensors have shown promise for many sensing applications, such as thermal sensing, magnetic detection, and biosensing. However, despite their superior sensitivity, the conventional sensing method for WGM resonators relies on tracking the changes in a single mode, which limits the dynamic range constrained by the laser source that has to be fine-tuned in a timely manner to follow the selected mode during the measurement. Moreover, we cannot derive the actual temperature from the spectrum directly but rather derive a relative temperature change. Here, we demonstrate an optical WGM barcode technique involving simultaneous monitoring of the patterns of multiple modes that can provide a direct temperature readout from the spectrum. The measurement relies on the patterns of multiple modes in the WGM spectrum instead of the changes of a particular mode. It can provide us with more information than the single-mode spectrum, such as the precise measurement of actual temperatures. Leveraging the high sensitivity of WGMs and eliminating the need to monitor particular modes, this work lays the foundation for developing a high-performance temperature sensor with not only superior sensitivity but also a broad dynamic range.

     
    more » « less
  2. Abstract

    While motion sensors such as accelerometers are commonplace now, highly sensitive conformal sensors that can quantify fine motion with high resolution remain to be realized. Current strain sensors exhibit a trade‐off between dynamic range and strain sensitivity; these sensors therefore are not suitable for applications that require both large strain and excellent signal resolution, such as gesture control for virtual and augmented reality or feedback or prosthetics. Shape‐memory polymers coupled with thin films on stretchable elastomeric support substrates have recently emerged as fabrication platforms that improve strain sensor characteristics. Herein, skin‐mountable strain sensors are introduced, with large dynamic ranges (over 350%), higher gauge factor (GF) with linear responses to strain (from 0–150%), smaller footprint sizes, and less hysteresis compared to other sensors. It is demonstrated that these sensors are able to resolve down to 5° resolution of the proximal interphalangeal joint, which would enable gesture control for gaming and other motion sensing and control applications. Because these sensors have a small form factor and are low‐cost and disposable, such technology can find various electronic applications.

     
    more » « less
  3. High testosterone is associated with increased physical performance in sports due to its stimulation with body-muscle ratio, lean mass (muscle and bone), and bone density. Several studies show athletes with better explosive strength and sprint running performances in football, have a higher basal level of testosterone. The results suggest a relationship between testosterone production and the development of fast-twitch muscle fibers, endurance training, lean mass, resistance training in athletes as well as motivation for competition. Thus, monitoring testosterone levels is gaining attention to evaluate athletic performance of one's physical performance in sport, fitness, and bodybuilding as well as prevent health risk factors for low levels of testosterone. There have been attempts using optical, electrical and biochemical sensors to monitor testosterone but are difficult to reproduce in large quantities and suffer from limitations of sensitivity, and detection limits. This can be addressed using Molecularly Imprinted Polymers (MIPs) in a point of care (POC) system. Molecularly Imprinted Polymers (MIPs) are a synthetic polymer with cavities in the polymer matrix serve as recognition sites for a specific template molecule, which are detected using electrochemical amperometry. In this paper, we have used MIPs in conjunction with cyclic voltammetry, to produce a viable, ultrasensitive electrochemical sensor for the detection of testosterone from a human sweat sample. This combination of MIPs and cyclic voltammetry allows for a simple, low-cost, mass-producible, and non-invasive method for detecting testosterone in human males. This method is extremely simple and cheap, allowing for consistent measurement of Testosterone levels in humans and allows for the detection of Testosterone in a POC. In our work, a Screen-printed carbon electrode (SPCE) using polypropylene fabric was used as the base working electrode in a three-electrode system. The screen-printing technique was implemented to layer a carbon paste over both sides of the fabric and was air-dried for one hour at 75⁰C. The SPCE was immersed into an acetate buffer solution that contains a 2.0mM monomer called o-phenylenediamine and with a 0.1mM testosterone template. Electropolymerization was carried out with cyclic voltammetry from a range of 0V to 1.0V, at a scan rate of 50 mV/s, a sensitivity (A/V) of 1e-5A, and for a total of 30 cycles. The set concentration tested was 100-1600 ng/ml of testosterone. The electrochemical characterization will have a potential sweep of -1.2 V to 1.2 V, a scan rate of 0.05 (V/s), a sensitivity (A/V) of 1e-5A, and a singular cycle. The wearable biosensor showed a detection range for testosterone from 100ng to 1600ng, electrochemical results also showed a clear and measurable result with an R-square value of 0.9417 which proves the accuracy of the developed sensor. Although this is not the complete saturation point and theoretically maximum limit of 28,842ng/ml can be achieved although this was not tested. The detectable lowest concentration of testosterone was found to be ~100ng/ml, and it was noted that lower than 100ng gives a weaker signal, In conclusion a novel electrochemical sensor based on a molecularly imprinted polymer used as the extended gate of a field effect transistor was developed for the ultrasensitive detection of sweat Testosterone. This sensing technology paves the way for the low cost, label-free, and point of care detection which can be used for evaluating ang monitoring athletic performance. 
    more » « less
  4. Abstract Exceptional point degeneracies (EPDs) in the resonant spectrum of non-Hermitian systems have been recently employed for sensing due to the sublinear response of the resonance splitting when a perturbant interacts with the sensor. The sublinear response provides high sensitivity to small perturbations and a large dynamic range. However, the resonant-based EPD sensing abides to the resolution limit imposed by the resonant quality factors and by the signal-to-noise ratio reduction due to gain-elements. Moreover, it is susceptible to local mechanical disturbances and imperfections. Here, we propose a passive non-resonant (NR) EPD-sensor that is resilient to losses, local cavity variations, and noise. The NR-EPD describes the coalescence of Bloch eigenmodes associated with the spectrum of transfer matrices of periodic structures. This coalescence enables scattering cross-section cusps with a sublinear response to small detunings away from an NR-EPD. We show that these cusps can be utilized for enhanced noise-resilient sensing. 
    more » « less
  5. Abstract

    Modern navigation systems integrate the global positioning system (GPS) with an inertial navigation system (INS), which complement each other for correct attitude and velocity determination. The core of the INS integrates accelerometers and gyroscopes used to measure forces and angular rate in the vehicular inertial reference frame. With the help of gyroscopes and by integrating the acceleration to compute velocity and distance, precision and compact accelerometers with sufficient accuracy can provide small‐error location determination. Solid‐state implementations, through coherent readout, can provide a platform for high performance acceleration detection. In contrast to prior accelerometers using piezoelectric or capacitive readout techniques, optical readout provides narrow‐linewidth high‐sensitivity laser detection along with low‐noise resonant optomechanical transduction near the thermodynamical limits. Here an optomechanical inertial sensor with an 8.2 µg Hz−1/2velocity random walk (VRW) at an acquisition rate of 100 Hz and 50.9 µg bias instability is demonstrated, suitable for applications, such as, inertial navigation, inclination sensing, platform stabilization, and/or wearable device motion detection. Driven into optomechanical sustained‐oscillation, the slot photonic crystal cavity provides radio‐frequency readout of the optically‐driven transduction with an enhanced 625 µg Hz−1sensitivity. Measuring the optomechanically‐stiffened oscillation shift, instead of the optical transmission shift, provides a 220× VRW enhancement over pre‐oscillation mode detection.

     
    more » « less