skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Parameterization of Submesoscale Symmetric Instability in Dense Flows Along Topography
Abstract

We develop a parameterization for representing the effects of submesoscale symmetric instability (SI) in the ocean interior. SI may contribute to water mass modification and mesoscale energy dissipation in flow systems throughout the World Ocean. Dense gravity currents forced by surface buoyancy loss over shallow shelves are a particularly compelling test case, as they are characterized by density fronts and shears susceptible to a wide range of submesoscale instabilities. We present idealized experiments of Arctic shelf overflows employing the GFDL‐MOM6 inz* and isopycnal coordinates. At the highest resolutions, the dense flow undergoes geostrophic adjustment and forms bottom‐ and surface‐intensified jets. The density front along the topography combined with geostrophic shear initiates SI, leading to onset of secondary shear instability, dissipation of geostrophic energy, and turbulent mixing. We explore the impact of vertical coordinate, resolution, and parameterization of shear‐driven mixing on the representation of water mass transformation. We find that in isopycnal and low‐resolutionz* simulations, limited vertical resolution leads to inadequate representation of diapycnal mixing. This motivates our development of a parameterization for SI‐driven turbulence. The parameterization is based on identifying unstable regions through a balanced Richardson number criterion and slumping isopycnals toward a balanced state. The potential energy extracted from the large‐scale flow is assumed to correspond to the kinetic energy of SI which is dissipated through shear mixing. Parameterizing submesoscale instabilities by combining isopycnal slumping with diapycnal mixing becomes crucial as ocean models move toward resolving mesoscale eddies and fronts but not the submesoscale phenomena they host.

 
more » « less
NSF-PAR ID:
10449464
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
13
Issue:
6
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Submesoscale processes provide a pathway for energy to transfer from the balanced circulation to turbulent dissipation. One class of submesoscale phenomena that has been shown to be particularly effective at removing energy from the balanced flow is centrifugal–symmetric instabilities (CSIs), which grow via geostrophic shear production. CSIs have been observed to generate significant mixing in both the surface boundary layer and bottom boundary layer flows along bathymetry, where they have been implicated in the mixing and water mass transformation of Antarctic Bottom Water. However, the mixing efficiency (i.e., the fraction of the energy extracted from the flow used to irreversibly mix the fluid) of these instabilities remains uncertain, making estimates of mixing and energy dissipation due to CSI difficult. In this work we use large-eddy simulations to investigate the mixing efficiency of CSIs in the submesoscale range. We find that centrifugally dominated CSIs (i.e., CSI mostly driven by horizontal shear production) tend to have a higher mixing efficiency than symmetrically dominated ones (i.e., driven by vertical shear production). The mixing efficiency associated with CSIs can therefore alternately be significantly higher or significantly lower than the canonical value used by most studies. These results can be understood in light of recent work on stratified turbulence, whereby CSIs control the background state of the flow in which smaller-scale secondary overturning instabilities develop, thus actively modifying the characteristics of mixing by Kelvin–Helmholtz instabilities. Our results also suggest that it may be possible to predict the mixing efficiency with more readily measurable parameters (viz., the Richardson and Rossby numbers), which would allow for parameterization of this effect. 
    more » « less
  2. Abstract

    As one kind of submesoscale instability, symmetric instability (SI) of the ocean surface mixed layer (SML) plays a significant role in modulating the SML energetics and material transport. The small spatial scales of SI,O(10 m–1 km), are not resolved by current climate ocean models and most regional models. This study describes comparisons in an idealized configuration of the SI parameterization scheme proposed by Bachman et al. (2017,https://doi.org/10.1016/j.ocemod.2016.12.003) (SI‐parameterized) versus the K‐Profile Parameterization scheme (SI‐neglected) as compared to a SI‐permitting model; all variants use the Coastal and Regional Ocean Community Model version of the Regional Ocean Modeling System and this study also serves to introduce the SI parameterization in that model. In both the SI‐parameterized and SI‐permitting models, the geostrophic shear production is enhanced and anticyclonic potential vorticity is reduced versus the SI‐neglected model. A comprehensive comparison of the energetics (geostrophic shear production, vertical buoyancy flux), mixed layer thickness, potential vorticity, and tracer redistribution indicate that all these variables in the SI‐parameterized case have structures closer to the SI‐permitting case in contrast to the SI‐neglected one, demonstrating that the SI scheme qualitatively improves representation of the impacts of SI. This work builds toward applying the SI scheme in a realistic regional or climate model.

     
    more » « less
  3. Abstract

    Fronts and near-inertial waves (NIWs) are energetic motions in the upper ocean that have been shown to interact and provide a route for kinetic energy (KE) dissipation of balanced oceanic flows. In this paper, we study these KE exchanges using an idealized model consisting of a two-dimensional geostrophically balanced front undergoing strain-induced semigeostrophic frontogenesis and internal wave (IW) vertical modes. The front–IW KE exchanges are quantified separately during two frontogenetic stages: an exponential sharpening stage that is characterized by a low Rossby number and is driven by the imposed strain (i.e., mesoscale frontogenesis), followed by a superexponential sharpening stage that is characterized by anRossby number and is driven by the convergence of the secondary circulation (i.e., submesoscale frontogenesis). It is demonstrated that high-frequency IWs quickly escape the frontal zone and are very efficient at extracting KE from the imposed geostrophic strain field through the deformation shear production (DSP). Part of the extracted KE is then converted to wave potential energy. On the contrary, NIWs remain locked to the frontal zone and readily exchange energy with the ageostrophic frontal circulation. During the exponential stage, NIWs extract KE from the geostrophic strain through DSP and transfer it to the frontal secondary circulation via the ageostrophic shear production (AGSP) mechanism. During the superexponential stage, a newly identified mechanism, convergence production (CP), plays an important role in the NIW KE budget. The CP transfers KE from the convergent ageostrophic secondary circulation to the NIWs and largely cancels out the KE loss due to the AGSP. This CP may explain previous findings of KE transfer enhancement from balanced motions to IWs in frontal regions of realistic ocean models. We provide analytical estimates for the aforementioned energy exchange mechanisms that match well the numerical results. This highlights that the strength of the exchanges strongly depends on the frontal Rossby and Richardson numbers.

    Significance Statement

    Fronts with large horizontal density and velocity gradients are ubiquitous in the upper ocean. They are generated by a process known as frontogenesis, which is often initialized by straining motions of mesoscale balanced circulations. Here we examine the energy exchanges between fronts and internal waves in an idealized configuration, aiming to elucidate the mechanisms that can drain energy from oceanic balanced circulations. We identify a new mechanism for energy transfers from the frontal circulation to near-inertial internal waves called convergence production. This mechanism is especially effective during the later stages of frontogenesis when the convergent ageostrophic secondary circulation that develops is strong.

     
    more » « less
  4. Abstract

    Biological productivity in the Southern Ocean is limited by iron availability. Previous studies of iron supply have focused on mixed‐layer entrainment and diapycnal fluxes. However, the Southern Ocean is a region highly energetic mesoscale and submesoscale turbulence. Here we investigate the role of eddies in supplying iron to the euphotic zone, using a flat‐bottom zonally re‐entrant model, configured to represent the Antarctic Circumpolar Current region, that is coupled to a biogeochemical model with a realistic seasonal cycle. Eddies are admitted or suppressed by changing the model's horizontal resolution. We utilize cross spectral analysis and the generalized Omega equation to temporally and spatially decompose the vertical transport attributable to mesoscale and submesoscale motions. Our results suggest that the mesoscale vertical fluxes provide a first‐order pathway for transporting iron across the mixing‐layer base, where diapycnal mixing is weak, and must be included in modeling the open‐Southern Ocean iron budget.

     
    more » « less
  5. Abstract

    Submesoscale sea surface temperature fronts are ubiquitous throughout much of the global ocean; however, the response of the marine atmospheric boundary layer (MABL) to the ocean submesoscale is not well understood. In this manuscript large‐eddy simulation is used to explore the time‐dependent response of the MABL to idealized submesoscale sea surface temperature fronts, with an emphasis on how the dynamics of the MABL determine the strength and position of gradients in wind speed and air temperature. Results suggest that horizontal mixing only becomes important in response to frontogenesis by horizontally convergent ageostrophic flows, contrary to the common assumption that the MABL response will be strongly dependent on horizontal turbulent mixing. The fronts that develop in the MABL are also associated with large vertical relative vorticity, suggesting the possibility that submesoscale fronts may induce inertial instability in the MABL. These results provide guidance for high‐resolution ocean and atmosphere modeling and for interpreting observations.

     
    more » « less