skip to main content


Title: Event Scale Relationships of DOC and TDN Fluxes in Throughfall and Stemflow Diverge From Stream Exports in a Forested Catchment
Abstract

Aquatic fluxes of carbon and nutrients link terrestrial and aquatic ecosystems. Within forests, storm events drive both the delivery of carbon and nitrogen to the forest floor and the export of these solutes from the land via streams. To increase understanding of the relationships between hydrologic event character and the relative fluxes of carbon and nitrogen in throughfall, stemflow and streams, we measured dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) concentrations in each flow path for 23 events in a forested watershed in Vermont, USA. DOC and TDN concentrations increased with streamflow, indicating their export was limited by water transport of catchment stores. DOC and TDN concentrations in throughfall and stemflow decreased exponentially with increasing precipitation, suggesting that precipitation removed a portion of available sources from tree surfaces during the events. DOC and TDN fluxes were estimated for 76 events across a 2‐year period. For most events, throughfall and stemflow fluxes greatly exceeded stream fluxes, but the imbalance narrowed for larger storms (>30 mm). The largest 10 stream events exported 40% of all stream event DOC whereas those same 10 events contributed 14% of all throughfall export. Approximately 2–5 times more DOC and TDN was exported from trees during rain events than left the catchment via streams annually. The diverging influence of event size on tree versus stream fluxes has important implications for forested ecosystems as hydrological events increase in intensity and frequency due to climate change.

 
more » « less
NSF-PAR ID:
10449467
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Biogeosciences
Volume:
126
Issue:
7
ISSN:
2169-8953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tree-derived dissolved organic matter (DOM) comprises a significant carbon flux within forested watersheds. Few studies have assessed the optical properties of tree-derived DOM. To increase understanding of the factors controlling tree-derived DOM quality, we measured DOM optical properties, dissolved organic carbon (DOC) and calcium concentrations in throughfall and stemflow for 17 individual rain events during summer and fall in a temperate deciduous forest in Vermont, United States. DOC and calcium fluxes in throughfall and stemflow were enriched on average 4 to 70 times incident fluxes in rain. A multiway model was developed using absorbance and fluorescence spectroscopy to further characterize DOM optical properties. Throughfall contained a higher percentage of protein-like DOM fluorescence than stemflow while stemflow was characterized by a higher percentage of humic-like DOM fluorescence. DOM absorbance spectral slopes in yellow birch (Betula alleghaniensis) stemflow were significantly higher than in sugar maple (Acer saccharum) stemflow. DOM optical metrics were not influenced by rainfall volume, but percent protein-like fluorescence increased in throughfall during autumn when leaves senesced. Given the potential influence of tree-derived DOM fluxes on receiving soils and downstream ecosystems, future modeling of DOM transport and soil biogeochemistry should represent the influence of differing DOM quality in throughfall and stemflow across tree species and seasons.

     
    more » « less
  2. Abstract

    This study focuses on characterizing the contributions of key terrestrial pathways that deliver dissolved organic carbon (DOC) to streams during hydrological events and on elucidating factors governing variation in water and DOC fluxes from these pathways. We made high‐frequency measurements of discharge, specific conductance (SC), and fluorescent dissolved organic matter (FDOM) during 221 events recorded over 2 years within four Vermont (USA) watersheds that range in area from 0.4 to 139 km2. Using the SC measurements, together with statistical information on discharge, we separated the event hydrographs into contributions from three terrestrial pathways, which we refer to as riparian quickflow, subsurface quickflow, and slow‐flow groundwater. The pathway discharges were used as input to a mixing model that closely approximated sub‐hourly streamwater DOC concentrations as measured with the FDOM sensors. Subsurface quickflow, comprised of pre‐event water, was the leading contributor to streamwater DOC fluxes, while riparian quickflow, comprised of event water, was the second‐leading contributor to streamwater DOC fluxes, despite comprising the smallest proportion of streamflow yield among the three end‐member pathways. Fixed‐effects regression analysis revealed that the relationship between DOC fluxes from the end‐member pathways and event magnitude was consistent across the four watersheds. This analysis also showed that DOC fluxes from the quickflow pathways increased significantly with temperature and varied inversely, but weakly, with catchment antecedent wetness. We believe that our approach, which leverages in‐stream sensors that enable high‐frequency measurements over extended periods, may be applicable for evaluating controls on DOC export from other watersheds within and beyond our study region.

     
    more » « less
  3. Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of three shale-underlain headwater catchments located in Pennsylvania, USA (the forested Shale Hills Critical Zone Observatory), and Wales, UK (the peatland-dominated Upper Hafren and forest-dominated Upper Hore catchments in the Plynlimon forest), dissimilar concentration–discharge (CQ) behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation and soil organic matter (SOM). Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Furthermore, concentration–discharge relationships of non-chemostatic solutes changed following tree harvest in the Upper Hore catchment in Plynlimon, while no changes were observed for chemostatic solutes, underscoring the role of vegetation in regulating the concentrations of certain elements in the stream. These results indicate that differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where SOM is dominantly in lowlands (e.g., Shale Hills), we infer that non-chemostatic elements associated with organic matter are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), these non-chemostatic elements are released later during rainfall events. The distribution of SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.

     
    more » « less
  4. Soil biota generate CO2 that can vertically export to the atmosphere, and dissolved organic and inorganic carbon (DOC and DIC) that can laterally export to streams and accelerate weathering. These processes are regulated by external hydroclimate forcing and internal structures (permeability distribution), the relative influences of which are rarely studied. Understanding these interactions is essential a hydrological extremes intensify in the future. Here we explore the question: How and to what extent do hydrological and permeability distribution conditions regulate soil carbon transformations and chemical weathering? We address the questions using a hillslope reactive transport model constrained by data from the Fitch Forest (Kansas, United States). Numerical experiments were used to mimic hydrological extremes and variable shallow-versus-deep permeability contrasts. Results demonstrate that under dry conditions (0.08 mm/day), long water transit times led to more mineralization of organic carbon (OC) into inorganic carbon (IC) form (>98\%). Of the IC produced, ~ 75\% was emitted upward as CO2 gas and ~ 25\% was exported laterally as DIC into the stream. Wet conditions (8.0 mm/day) resulted in less mineralization (~88\%), more DOC production (~12\%), and more lateral fluxes of IC (~50\% of produced IC). Carbonate precipitated under dry conditions and dissolved under wet conditions as the fast flow rapidly droves the reaction to disequilibrium. The results depict a conceptual hillslope model that prompts four hypotheses for our community to test. H1: Droughts enhance carbon mineralization and vertical upward carbon fluxes, whereas large hydrological events such as storms and flooding enhance subsurface vertical connectivity, reduce transit times, and promote lateral export. H2: The role of weathering as a net carbon sink or source to the atmosphere depends on the interaction between hydrologic flows and lithology: transition from droughts to storms can shift carbonate from a carbon sink (mineral precipitation) to carbon source (dissolution). H3: Permeability contrasts regulate the lateral flow partitioning via shallow flow paths versus deeper groundwater though this alter reaction rates negligibly. H4: Stream chemistry reflect flow paths and can potentially quantify water transit times: solutes enriched in shallow soils have a younger water signature; solutes abundant at depth carry older water signature. 
    more » « less
  5. The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes. 
    more » « less