Rhythm plays an important role in language perception and learning, with infants perceiving rhythmic differences across languages at birth. While the mechanisms underlying rhythm perception in speech remain unclear, one interesting possibility is that these mechanisms are similar to those involved in the perception of musical rhythm. In this work, we adopt a model originally designed for musical rhythm to simulate speech rhythm perception. We show that this model replicates the behavioral results of language discrimination in newborns, and outperforms an existing model of infant language discrimination. We also find that percussives — fast-changing components in the acoustics — are necessary for distinguishing languages of different rhythms, which suggests that percussives are essential for rhythm perception. Our music-inspired model of speech rhythm may be seen as a first step towards a unified theory of how rhythm is represented in speech and music.
more »
« less
Bouncing the network: A dynamical systems model of auditory–vestibular interactions underlying infants’ perception of musical rhythm
Abstract Previous work suggests that auditory–vestibular interactions, which emerge during bodily movement to music, can influence the perception of musical rhythm. In a seminal study on the ontogeny of musical rhythm, Phillips‐Silver and Trainor (2005) found that bouncing infants to an unaccented rhythm influenced infants’ perceptual preferences for accented rhythms that matched the rate of bouncing. In the current study, we ask whether nascent, diffuse coupling between auditory and motor systems is sufficient to bootstrap short‐term Hebbian plasticity in the auditory system and explain infants’ preferences for accented rhythms thought to arise from auditory–vestibular interactions. First, we specify a nonlinear, dynamical system in which two oscillatory neural networks, representing developmentally nascent auditory and motor systems, interact through weak, non‐specific coupling. The auditory network was equipped with short‐term Hebbian plasticity, allowing the auditory network to tune its intrinsic resonant properties. Next, we simulate the effect of vestibular input (e.g., infant bouncing) on infants’ perceptual preferences for accented rhythms. We found that simultaneous auditory–vestibular training shaped the model's response to musical rhythm, enhancing vestibular‐related frequencies in auditory‐network activity. Moreover, simultaneous auditory–vestibular training, relative to auditory‐ or vestibular‐only training, facilitated short‐term auditory plasticity in the model, producing stronger oscillator connections in the auditory network. Finally, when tested on a musical rhythm, models which received simultaneous auditory–vestibular training, but not models that received auditory‐ or vestibular‐only training, resonated strongly at frequencies related to their “bouncing,” a finding qualitatively similar to infants’ preferences for accented rhythms that matched the rate of infant bouncing.
more »
« less
- Award ID(s):
- 1735225
- PAR ID:
- 10449560
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Developmental Science
- Volume:
- 24
- Issue:
- 5
- ISSN:
- 1363-755X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neural entrainment to musical rhythm is thought to underlie the perception and production of music. In aging populations, the strength of neural entrainment to rhythm has been found to be attenuated, particularly during attentive listening to auditory streams. However, previous studies on neural entrainment to rhythm and aging have often employed artificial auditory rhythms or limited pieces of recorded, naturalistic music, failing to account for the diversity of rhythmic structures found in natural music. As part of larger project assessing a novel music-based intervention for healthy aging, we investigated neural entrainment to musical rhythms in the electroencephalogram (EEG) while participants listened to self-selected musical recordings across a sample of younger and older adults. We specifically measured neural entrainment to the level of musical pulse—quantified here as the phase-locking value (PLV)—after normalizing the PLVs to each musical recording’s detected pulse frequency. As predicted, we observed strong neural phase-locking to musical pulse, and to the sub-harmonic and harmonic levels of musical meter. Overall, PLVs were not significantly different between older and younger adults. This preserved neural entrainment to musical pulse and rhythm could support the design of music-based interventions that aim to modulate endogenous brain activity via self-selected music for healthy cognitive aging.more » « less
-
Infant-robot interaction has been increasingly gaining attention, yet, there are limited studies on the development of robot-assisted environments that promote perceptual-motor development in infants. This paper assesses the feasibility of operating a spherical mobile robot, Sphero, to engage infants in perceptual-motor exploration of an open area. Two case scenarios were considered. In the first case, Sphero was the only robot providing stimuli in the environment. In the second case, two additional robots provided stimuli along with Sphero. Pilot data from two infants were analyzed to extract information on their visual attention to and physical interaction with Sphero, as well as their motor actions. Overall, infants (i) expressed a preference to Sphero regardless of stimulation levels, and (ii) moved out of stationary postures in an effort to chase and approach Sphero. These preliminary findings provide support for the future implementation of Sphero in robot-assisted learning environments to promote perceptual-motor development in infants.more » « less
-
This study investigates whether short-term perceptual training can enhance Seoul-Korean listeners’ use of English lexical stress in spoken word recognition. Unlike English, Seoul Korean does not have lexical stress (or lexical pitch accents/tones). Seoul-Korean speakers at a high-intermediate English proficiency completed a visual-world eye-tracking experiment adapted from Connell et al. (2018) (pre-/post-test). The experiment tested whether pitch in the target stimulus (accented versus unaccented first syllable) and vowel quality in the lexical competitor (reduced versus full first vowel) modulated fixations to the target word (e.g., PARrot; ARson) over the competitor word (e.g., paRADE or PARish; arCHIVE or ARcade). In the training (eight 30-min sessions over eight days), participants heard English lexical-stress minimal pairs uttered by four talkers (high variability) or one talker (low variability), categorized them as noun (first-syllable stress) or verb (second-syllable stress), and received accuracy feedback. The results showed that neither training increased target-over-competitor fixation proportions. Crucially, the same training had been found to improve Seoul- Korean listeners’ recall of English words differing in lexical stress (Tremblay et al., 2022) and their weighting of acoustic cues to English lexical stress (Tremblay et al., 2023). These results suggest that short-term perceptual training has a limited effect on target-over-competitor word activation.more » « less
-
Pleasure in music has been linked to predictive coding of melodic and rhythmic patterns, subserved by connectivity between regions in the brain's auditory and reward networks. Specific musical anhedonics derive little pleasure from music and have altered auditory-reward connectivity, but no difficulties with music perception abilities and no generalized physical anhedonia. Recent research suggests that specific musical anhedonics experience pleasure in nonmusical sounds, suggesting that the implicated brain pathways may be specific to music reward. However, this work used sounds with clear real-world sources (e.g., babies laughing, crowds cheering), so positive hedonic responses could be based on the referents of these sounds rather than the sounds themselves. We presented specific musical anhedonics and matched controls with isolated short pleasing and displeasing synthesized sounds of varying timbres with no clear real-world referents. While the two groups found displeasing sounds equally displeasing, the musical anhedonics gave substantially lower pleasure ratings to the pleasing sounds, indicating that their sonic anhedonia is not limited to musical rhythms and melodies. Furthermore, across a large sample of participants, mean pleasure ratings for pleasing synthesized sounds predicted significant and similar variance in six dimensions of musical reward considered to be relatively independent, suggesting that pleasure in sonic timbres play a role in eliciting reward-related responses to music. We replicate the earlier findings of preserved pleasure ratings for semantically referential sounds in musical anhedonics and find that pleasure ratings of semantic referents, when presented without sounds, correlated with ratings for the sounds themselves. This association was stronger in musical anhedonics than in controls, suggesting the use of semantic knowledge as a compensatory mechanism for affective sound processing. Our results indicate that specific musical anhedonia is not entirely specific to melodic and rhythmic processing, and suggest that timbre merits further research as a source of pleasure in music.more » « less
An official website of the United States government
