There is a critical need to develop a method to pattern semiconducting polymers for device applications on the sub-micrometer scale. Dopant induced solubility control (DISC) patterning is a recently published method for patterning semiconductor polymers that has demonstrated sub-micron resolution. DISC relies on the sequential addition of molecular dopants (here 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)) to the conjugated polymer. In doped areas, the conjugated polymer is protected from dissolution while in undoped areas, the polymer dissolves into solution. Here we examine factors that affect the resolution of the developed pattern. Two factors are determined to be critical to pattern resolution, the initial crystallinity of the polymer, here poly(3-hexylthiophene) (P3HT), and the quality of the development solvent. We find that dopants diffuse more readily in highly crystalline films than in amorphous films of P3HT and that dopant diffusion reduces the fidelity of the resulting pattern. We also find that the choice of development solvent affects both the fidelity of the pattern and dopant distribution within the patterned polymer domains. Finally, we show that a dopant that diffuses more slowly than F4TCNQ in the P3HT film can be used to pattern the film with higher fidelity. These results together provide a road map for optimizing additive DISC patterning for any polymer/dopant pair.
more »
« less
Reversible Doping and Photo Patterning of Polymer Nanowires
Abstract Recent development of dopant induced solubility control (DISC) patterning of polymer semiconductors has enabled direct‐write optical patterning of poly‐3‐hexylthiophene (P3HT) with diffraction limited resolution. Here, the optical DISC patterning technique to the most simple circuit element, a wire, is applied. Optical patterning of P3HT and P3HT doped with the molecular dopant 2,3,5,6‐tetrafluoro‐7,7,8,8‐tetracyanoquinodimethane (F4TCNQ) wires with dimensions of 20–70 nm thickness, 200–900 nm width, and 40 μm length is demonstrated. In addition, optical patterning of wire patterns like “L” bends and “T” junctions without changing the diameter or thickness of the wires at the junctions is demonstrated. The wires themselves show up to 0.034 S cm‐1conductance when sequentially doped. It is also demonstrated that a P3HT nanowire can be doped, de‐doped, and re‐doped from solution without changing the dimension of the wire. The combined abilities to optically pattern and reversibly dope a polymer semiconductor represents a full suite of patterning steps equivalent to photolithography for inorganic semiconductors.
more »
« less
- PAR ID:
- 10449608
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 6
- Issue:
- 10
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Patterned semiconductors are essential for the fabrication of nearly all electronic devices. Over the last two decades, semiconducting polymers (SPs) have received enormous attention due to their potential for creating low‐cost flexible electronic devices, while development of scalable patterning methods capable of producing sub‐μm feature sizes has lagged. A novel method for patterning SPs termed Projection Photothermal Lithography (PPL) is presented. A lab scale PPL microscope is built and it is demonstrated that rapid (≈4 cm2h−1) and large single exposure area (≈0.69 mm2) sub‐μm patterns can be obtained optically. Polymer domains are selectively removed via a photo‐induced temperature gradient that enables dissolution. It is hypothesized that commercial‐scale patterning with a throughput of≈5 m2h−1and resolution of<1μm could be realized through optimization of optical components.more » « less
-
Katz, Howard (Ed.)Abstract The design of polymeric semiconductors exhibiting high electrical conductivity (σ) and thermoelectric power factor (PF) will be vital for flexible large‐area electronics. In this work, four polymers based on diketopyrrolopyrrole (DPP), 2,3‐dihydrothieno[3,4‐b][1,4]dioxine (EDOT), thieno[3,2‐b]thiophene (TT), and 3, 3′‐bis (2‐(2‐(2‐methoxyethoxy) ethoxy) ethoxy)‐2, 2′‐bithiophene (MEET) are investigated as side‐chains, with the MEET polymers newly synthesized for this study. These polymers are systematically doped with tetrafluorotetracyanoquinodimethane ( F4TCNQ), CF3SO3H, and the synthesized dopant Cp(CN)3‐(COOMe)3, differing in geometry and electron affinity. The DPP‐EDOT‐based polymer containing MEET as side‐chains exhibits the highest conductivity (σ) ≈700 S cm−1 in this series with the acidic dopant (CF3SO3H). This polymer also shows the lowest oxidation potential by cyclic voltammetry (CV), the strongest intermolecular interactions evidenced by differential scanning calorimetry (DSC), and has the most oxygen‐based functionality for possible hydrogen bonding and ionic screening. Other polymers exhibit high σ ≈300–500 S cm−1 and power factor up to 300 µW m−1K−2. The mechanism of conductivity is predominantly electronic, as validated by time‐dependent conductance studies and transient thermo voltage monitoring over time, including for those doped with the acid. These materials maintain significant thermal stability and air stability over ≈6 weeks. Density functional theory calculations reveal molecular geometries and inform about frontier energy levels. Raman spectroscopy, in conjunction with scanning electron microscopy (SEM‐EDS) and x‐ray diffraction, provides insight into the solid‐state microstructure and degree of phase separation of the doped polymer films. Infrared spectroscopy enables this study to further quantify the degree of charge transfer from polymer to dopant.more » « less
-
Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored.more » « less
-
null (Ed.)The stiffness of conjugated polymers should lead to chain alignment near buried interfaces, even if the polymer film is nominally amorphous. Although simulations predict that this alignment layer is approximately 1.5 times the persistence length, chain alignment at buried interfaces of amorphous polymers has not been experimentally measured. Using Mueller matrix spectroscopy, the optical response of regiorandom poly(3-hexylthiophene-2,5-diyl) (P3HT) was modeled in order to extract the aligned layer thickness. By approximating the optical properties of the aligned layer as that of regioregular P3HT, the data can be effectively modeled. When the film is thicker than 150 nm, optical properties are best described with a 4-nm aligned layer, which is quantitatively consistent with previous predictions.more » « less