skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Ultra‐Uniform Nanocrystalline Materials via Two‐Step Sintering
Abstract

Nanocrystalline materials with superior properties are of great interest. Much is discussed about obtaining nanograins, but little is known about maintaining grain‐size uniformity that is critical for reliability. An especially intriguing question is whether it is possible to achieve a size distribution narrower than what Hillert theoretically predicted for normal grain growth, a possibility suggested—for growth with a higher growth exponent—by the generalized mean‐field theory of Lifshitz, Slyozov, Wagner (LSW), and Hillert but never realized in practice. Following a rationally designed two‐step sintering route, it has been made possible in bulk materials by taking advantage of the large growth exponent in the intermediate sintering stage to form a uniform microstructure despite residual porosity, and freezing the grain growth thereafter while continuing densification to reach full density. The bulk dense Al2O3ceramic thus obtained has an average grain size of 34 nm and a size distribution much narrower than Hillert's prediction. Bulk Al2O3with a grain‐size distribution narrower than the particle‐size distribution of starting powders is also demonstrated, as are highly uniform bulk engineering metals (refractory Mo and W‐Re alloy) and complex functional ceramics (BaTiO3‐based alloys with superior dielectric strength and energy capacity).

 
more » « less
NSF-PAR ID:
10449610
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
1
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The addition of small quantities of aluminum oxide (Al2O3) to 8 mol% yttria‐stabilized zirconia (8YSZ) benefits conventional sintering by acting as a sintering aid and altering grain growth behavior. However, it is uncertain if these benefits observed during conventional sintering extend to flash sintering. In this work, nanoscale films of Al2O3are deposited on 8YSZ powders by particle atomic layer deposition (ALD). The ALD‐coated powders were flash sintered using voltage‐to‐current control and current rate experiments. The sintering behavior, microstructural evolution, and ionic conductivities were characterized. The addition of Al2O3films changed the conductivity of the starting powder, effectively moving the flash onset temperature. The grain size of the samples flashed with current rate experiments was ~65% smaller than that of conventionally sintered samples. Measurement of grain size and estimates of sample density as a function of temperature during flash sintering showed that small quantities of Al2O3can enhance grain growth and sintering of 8YSZ. This suggests that Al2O3dissolves into the 8YSZ grain boundaries during flash sintering to form complexions that enhance the diffusion of species controlling these processes.

     
    more » « less
  2. Abstract

    This work investigates the effects of doping on both the thermodynamics and kinetics of sintering in aluminum‐doped yttrium oxide nanoparticles (Al‐doped Y2O3), with the objective of delineating their interdependent effects at different stages of the process. Direct measurements of surface and grain boundary energies using differential scanning calorimetry showed that Al‐doping decreases both interfacial energies, leading to an increase in dihedral angle (from 152.7 ± 5.6° to 165.8 ± 5.5°) and, therefore, sintering stress. Densification and grain growth analyses showed that despite this increase in sintering stress, the onset of sintering is delayed for the Al‐doped samples, demonstrating that a large dihedral angle is a necessary but not sufficient condition for densification. The measurements of activation energies for densification and grain growth point out that Al suppresses grain boundary mobility by increasing the activation energy from 400 to 448 kJ/mol, hindering densification at the intermediate stages of sintering. At temperatures above 1150℃, grain growth is activated in the Al‐doped samples, which rapidly releases the accumulated sintering stress and exhibits a higher densification rate than in undoped Y2O3. This study demonstrates a complex interconnectivity between the thermodynamics and kinetics at different temperature ranges of sintering and reinforces the need for a comprehensive description for proper design of sintering aids.

     
    more » « less
  3. Abstract

    The mechanical properties of Al2O3–LaPO4composites with varying microstructures produced by flash sintering and conventional sintering are evaluated. Specifically, Vickers and Knoop hardness values were measured and calculated for different resultant microstructures, including eutectic microstructures with varying layer thickness, polycrystalline (noneutectic) microstructures, and single‐phase samples of Al2O3, LaPO4, and 8YSZ. The findings indicate that eutectic microstructures exhibited higher hardness values than polycrystalline counterparts on the flash‐sintered sample. However, the hardness values of eutectic microstructures with varying layer thicknesses show no significant or systematic variation. The grain size, indentation size, eutectic colony size, indentation shape (elastic recovery in Knoop indentations), and crack propagation pathways in the indented samples are also discussed. Overall, the results suggest that Al2O3–LaPO4eutectic composites have higher hardness than their polycrystalline counterparts and have great potential as abradable coatings with high machinability and durability.

     
    more » « less
  4. Abstract

    Radiation damage tolerance for a variety of ceramics at high temperatures depends on the material’s resistance to nucleation and growth of extended defects. Such processes are prevalent in ceramics employed for space, nuclear fission/fusion and nuclear waste environments. This report shows that random heterointerfaces in materials with sub-micron grains can act as highly efficient sinks for point defects compared to grain boundaries in single-phase materials. The concentration of dislocation loops in a radiation damage-prone phase (Al2O3) is significantly reduced when Al2O3is a component of a composite system as opposed to a single-phase system. These results present a novel method for designing exceptionally radiation damage tolerant ceramics at high temperatures with a stable grain size, without requiring extensive interfacial engineering or production of nanocrystalline materials.

     
    more » « less
  5. Abstract

    The properties of technical ceramics are highly dependent on their microstructure, which evolves during sintering. Sintering is the process by which ceramic parts are subjected to high temperatures to activate chemical diffusion and the consumption of porosity. During the initial stage of sintering, interparticle necks between neighboring particles form and subsequently increase in size, consuming porosity as the particle centers move closer together. To experimentally determine how this process depends on particle surface composition, particle atomic layer deposition (ALD) was used to deposit a thin film of amorphous aluminum oxide (Al2O3) onto yttria‐stabilized tetragonal zirconia (3YSZ) particles, producing core‐shell structured powders. The uniformity of the Al2O3film was confirmed with transmission electron microscopy and energy dispersive spectroscopy. Scanning electron microscopy was used to observe microstructural evolution during sintering, and the dihedral angles of Al2O3and 3YSZ grains were measured to determine the ratio of interfacial energies between the 3YSZ|3YSZ, 3YSZ|Al2O3, and Al2O3|Al2O3interfaces. Analysis of the densification kinetics revealed that the initial stage of densification is dependent on the material at the surface of the particles (ie, the Al2O3film) and is controlled by the diffusion of Al3+cations through Al2O3. Once the Al2O3film has coalesced, the sintering behavior is controlled by the densification of the core material (3YSZ). Thus, core‐shell powders fabricated by particle ALD sinter by a two‐step process where the kinetics are dependent on the material present at interparticle contacts.

     
    more » « less