skip to main content

Title: A Tale of Two Disks: Mapping the Milky Way with the Final Data Release of APOGEE

We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]),α-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-αdisk, high-αdisk, and total population independently. The low-αdisk exhibits a negative radial metallicity gradient of −0.06 ± 0.001 dex kpc−1, which flattens with distance from the midplane. The high-αdisk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]–[Fe/H] plane and in the [Mg/Fe]–age relation persist across the entire disk. The age estimates have typical uncertainties of ∼0.15 in log(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy.

more » « less
Award ID(s):
1927130 1909897
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 124
["Article No. 124"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([\alpha /{\rm Fe}]\, |\, [{\rm Fe}/{\rm H}])$ in the Milky Way disk for the α-elements Mg, O, Si, S, and Ca. In each bin of [Fe/H] and Galactocentric radius R, we model p([α/Fe]) as a sum of two Gaussians, representing ‘low-α’ and ‘high-α’ populations with scale heights $z_1=0.45\, {\rm kpc}$ and $z_2=0.95\, {\rm kpc}$, respectively. By accounting for age-dependent and z-dependent selection effects in APOGEE, we infer the [α/Fe] distributions that would be found for a fair sample of long-lived stars covering all z. Near the Solar circle, this distribution is bimodal at sub-solar [Fe/H], with the low-α and high-α peaks clearly separated by a minimum at intermediate [α/Fe]. In agreement with previous results, we find that the high-α population is more prominent at smaller R, lower [Fe/H], and larger |z|, and that the sequence separation is smaller for Si and Ca than for Mg, O, and S. We find significant intrinsic scatter in [α/Fe] at fixed [Fe/H] for both the low-α and high-α populations, typically ∼0.04-dex. The means, dispersions, and relative amplitudes of this two-Gaussian description, and the dependence of these parameters on R, [Fe/H], and α-element, provide a quantitative target for chemical evolution models and a test for hydrodynamic simulations of disk galaxy formation. We argue that explaining the observed bimodality will probably require one or more sharp transitions in the disk’s gas accretion, star formation, or outflow history in addition to radial mixing of stellar populations. 
    more » « less
  2. Abstract

    Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M.

    more » « less
  3. ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe] relation. None of our models predict an [O/Fe] distribution with the distinct bimodality seen in the observations, suggesting that more dramatic evolutionary pathways are required. All code and tables used for our models are publicly available through the Versatile Integrator for Chemical Evolution (VICE; 
    more » « less
  4. Abstract Observations of the Milky Way’s low- α disk show that several element abundances correlate with age at fixed metallicity, with unique slopes and small scatters around the age–[X/Fe] relations. In this study, we turn to simulations to explore the age–[X/Fe] relations for the elements C, N, O, Mg, Si, S, and Ca that are traced in a FIRE-2 cosmological zoom-in simulation of a Milky Way–like galaxy, m12i, and understand what physical conditions give rise to the observed age–[X/Fe] trends. We first explore the distributions of mono-age populations in their birth and current locations, [Fe/H], and [X/Fe], and find evidence for inside-out radial growth for stars with ages <7 Gyr. We then examine the age–[X/Fe] relations across m12i’s disk and find that the direction of the trends agrees with observations, apart from C, O, and Ca, with remarkably small intrinsic scatters, σ int (0.01 − 0.04 dex). This σ int measured in the simulations is also metallicity dependent, with σ int ≈ 0.025 dex at [Fe/H] = −0.25 dex versus σ int ≈ 0.015 dex at [Fe/H] = 0 dex, and a similar metallicity dependence is seen in the GALAH survey for the elements in common. Additionally, we find that σ int is higher in the inner galaxy, where stars are older and formed in less chemically homogeneous environments. The age–[X/Fe] relations and the small scatter around them indicate that simulations capture similar chemical enrichment variance as observed in the Milky Way, arising from stars sharing similar element abundances at a given birth place and time. 
    more » « less
  5. Abstract

    To understand the formation and evolution of the Milky Way disk, we must connect its current properties to its past. We explore hydrodynamical cosmological simulations to investigate how the chemical abundances of stars might be linked to their origins. Using hierarchical clustering of abundance measurements in two Milky Way–like simulations with distributed and steady star formation histories, we find that groups of chemically similar stars comprise different groups in birth place (Rbirth) and time (age). Simulating observational abundance errors (0.05 dex), we find that to trace distinct groups of (Rbirth, age) requires a large vector of abundances. Using 15 element abundances (Fe, O, Mg, S, Si, C, P, Mn, Ne, Al, N, V, Ba, Cr, Co), up to ≈10 groups can be defined with ≈25% overlap in (Rbirth, age). We build a simple model to show that in the context of these simulations, it is possible to infer a star’s age andRbirthfrom abundances with precisions of ±0.06 Gyr and ±1.17 kpc, respectively. We find that abundance clustering is ineffective for a third simulation, where low-αstars form distributed in the disk and early high-αstars form more rapidly in clumps that sink toward the Galactic center as their constituent stars evolve to enrich the interstellar medium. However, this formation path leads to large age dispersions across the [α/Fe]–[Fe/H] plane, which is inconsistent with the Milky Way’s observed properties. We conclude that abundance clustering is a promising approach toward charting the history of our Galaxy.

    more » « less