skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development and application of quantum mechanics/molecular mechanics methods with advanced polarizable potentials
Abstract Quantum mechanics/molecular mechanics (QM/MM) simulations are a popular approach to study various features of large systems. A common application of QM/MM calculations is in the investigation of reaction mechanisms in condensed‐phase and biological systems. The combination of QM and MM methods to represent a system gives rise to several challenges that need to be addressed. The increase in computational speed has allowed the expanded use of more complicated and accurate methods for both QM and MM simulations. Here, we review some approaches that address several common challenges encountered in QM/MM simulations with advanced polarizable potentials, from methods to account for boundary across covalent bonds and long‐range effects, to polarization and advanced embedding potentials. This article is categorized under:Electronic Structure Theory > Combined QM/MM MethodsMolecular and Statistical Mechanics > Molecular InteractionsSoftware > Simulation Methods  more » « less
Award ID(s):
1856162
PAR ID:
10449758
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
WIREs Computational Molecular Science
Volume:
11
Issue:
4
ISSN:
1759-0876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The potential energy of molecular species and their conformers can be computed with a wide range of computational chemistry methods, from molecular mechanics to ab initio quantum chemistry. However, the proper choice of the computational approach based on computational cost and reliability of calculated energies is a dilemma, especially for large molecules. This dilemma is proved to be even more problematic for studies that require hundreds and thousands of calculations, such as drug discovery. On the other hand, driven by their pattern recognition capabilities, neural networks started to gain popularity in the computational chemistry community. During the last decade, many neural network potentials have been developed to predict a variety of chemical information of different systems. Neural network potentials are proved to predict chemical properties with accuracy comparable to quantum mechanical approaches but with the cost approaching molecular mechanics calculations. As a result, the development of more reliable, transferable, and extensible neural network potentials became an attractive field of study for researchers. In this review, we outlined an overview of the status of current neural network potentials and strategies to improve their accuracy. We provide recent examples of studies that prove the applicability of these potentials. We also discuss the capabilities and shortcomings of the current models and the challenges and future aspects of their development and applications. It is expected that this review would provide guidance for the development of neural network potentials and the exploitation of their applicability. This article is categorized under:Data Science > Artificial Intelligence/Machine LearningMolecular and Statistical Mechanics > Molecular InteractionsSoftware > Molecular Modeling 
    more » « less
  2. The hybrid quantum mechanics/molecular mechanics (QM/MM) approach, which combines the accuracy of QM methods with the efficiency of MM methods, is widely used in the study of complex systems. However, past QM/MM implementations often neglect or face challenges in addressing nuclear quantum effects, despite their crucial role in many key chemical and biological processes. Recently, our group developed the constrained nuclear-electronic orbital (CNEO) theory, a cost-efficient approach that accurately addresses nuclear quantum effects, especially quantum nuclear delocalization effects. In this work, we integrate CNEO with the QM/MM approach through the electrostatic embedding scheme and apply the resulting CNEO QM/MM to two hydrogen-bonded complexes. We find that both solvation effects and nuclear quantum effects significantly impact hydrogen bond structures and dynamics. Notably, in the glutamic acid–glutamate complex, which mimics a common low barrier hydrogen bond in biological systems, CNEO QM/MM accurately predicts nearly equal proton sharing between the two residues. With an accurate description of both quantum nuclear delocalization effects and environmental effects, CNEO QM/MM is a promising new approach for simulating complex chemical and biological systems. 
    more » « less
  3. Abstract AQME, automated quantum mechanical environments, is a free and open‐source Python package for the rapid deployment of automated workflows using cheminformatics and quantum chemistry. AQME workflows integrate tasks performed across multiple computational chemistry packages and data formats, preserving all computational protocols, data, and metadata for machine and human users to access and reuse. AQME has a modular structure of independent modules that can be implemented in any sequence, allowing the users to use all or only the desired parts of the program. The code has been developed for researchers with basic familiarity with the Python programming language. The CSEARCH module interfaces to molecular mechanics and semi‐empirical QM (SQM) conformer generation tools (e.g., RDKit and Conformer–Rotamer Ensemble Sampling Tool, CREST) starting from various initial structure formats. The CMIN module enables geometry refinement with SQM and neural network potentials, such as ANI. The QPREP module interfaces with multiple QM programs, such as Gaussian, ORCA, and PySCF. The QCORR module processes QM results, storing structural, energetic, and property data while also enabling automated error handling (i.e., convergence errors, wrong number of imaginary frequencies, isomerization, etc.) and job resubmission. The QDESCP module provides easy access to QM ensemble‐averaged molecular descriptors and computed properties, such as NMR spectra. Overall, AQME provides automated, transparent, and reproducible workflows to produce, analyze and archive computational chemistry results. SMILES inputs can be used, and many aspects of tedious human manipulation can be avoided. Installation and execution on Windows, macOS, and Linux platforms have been tested, and the code has been developed to support access through Jupyter Notebooks, the command line, and job submission (e.g., Slurm) scripts. Examples of pre‐configured workflows are available in various formats, and hands‐on video tutorials illustrate their use. This article is categorized under:Data Science > ChemoinformaticsData Science > Computer Algorithms and ProgrammingSoftware > Quantum Chemistry 
    more » « less
  4. Density functional theory (DFT) has been applied to modeling molecular interactions in water for over three decades. The ubiquity of water in chemical and biological processes demands a unified understanding of its physics, from the single molecule to the thermodynamic limit and everything in between. Recent advances in the development of data-driven and machine-learning potentials have accelerated simulation of water and aqueous systems with DFT accuracy. However, anomalous properties of water in the condensed phase, where a rigorous treatment of both local and non-local many-body (MB) interactions is in order, are often unsatisfactory or partially missing in DFT models of water. In this review, we discuss the modeling of water and aqueous systems based on DFT and provide a comprehensive description of a general theoretical/computational framework for the development of data-driven many-body potentials from DFT reference data. This framework, coined MB-DFT, readily enables efficient many-body molecular dynamics (MD) simulations of small molecules, in both gas and condensed phases, while preserving the accuracy of the underlying DFT model. Theoretical considerations are emphasized, including the role that the delocalization error plays in MB-DFT potentials of water and the possibility to elevate DFT and MB-DFT to near-chemical-accuracy through a density-corrected formalism. The development of the MB-DFT framework is described in detail, along with its application in MB-MD simulations and recent extension to the modeling of reactive processes in solution within a quantum mechanics/MB molecular mechanics (QM/MB-MM) scheme, using water as a prototypical solvent. Finally, we identify open challenges and discuss future directions for MB-DFT and QM/MB-MM simulations in condensed phases. 
    more » « less
  5. PyDFT-QMMM is a Python-based package for performing hybrid quantum mechanics/molecular mechanics (QM/MM) simulations at the density functional level of theory. The program is designed to treat short-range and long-range interactions through user-specified combinations of electrostatic and mechanical embedding procedures within periodic simulation domains, providing necessary interfaces to external quantum chemistry and molecular dynamics software. To enable direct embedding of long-range electrostatics in periodic systems, we have derived and implemented force terms for our previously described QM/MM/PME approach [Pederson and McDaniel, J. Chem. Phys. 156, 174105 (2022)]. Communication with external software packages Psi4 and OpenMM is facilitated through Python application programming interfaces (APIs). The core library contains basic utilities for running QM/MM molecular dynamics simulations, and plug-in entry-points are provided for users to implement custom energy/force calculation and integration routines, within an extensible architecture. The user interacts with PyDFT-QMMM primarily through its Python API, allowing for complex workflow development with Python scripting, for example, interfacing with PLUMED for free energy simulations. We provide benchmarks of forces and energy conservation for the QM/MM/PME and alternative QM/MM electrostatic embedding approaches. We further demonstrate a simple example use case for water solute in a water solvent system, for which radial distribution functions are computed from 100 ps QM/MM simulations; in this example, we highlight how the solvation structure is sensitive to different basis-set choices due to under- or over-polarization of the QM water molecule’s electron density. 
    more » « less