skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On tree longevity
Summary Large, majestic trees are iconic symbols of great age among living organisms. Published evidence suggests that trees do not die because of genetically programmed senescence in their meristems, but rather are killed by an external agent or a disturbance event. Long tree lifespans are therefore allowed by specific combinations of life history traits within realized niches that support resistance to, or avoidance of, extrinsic mortality. Another requirement for trees to achieve their maximum longevity is either sustained growth over extended periods of time or at least the capacity to increase their growth rates when conditions allow it. The growth plasticity and modularity of trees can then be viewed as an evolutionary advantage that allows them to survive and reproduce for centuries and millennia. As more and more scientific information is systematically collected on tree ages under various ecological settings, it is becoming clear that tree longevity is a key trait for global syntheses of life history strategies, especially in connection with disturbance regimes and their possible future modifications. In addition, we challenge the long‐held notion that shade‐tolerant, late‐successional species have longer lifespans than early‐successional species by pointing out that tree species with extreme longevity do not fit this paradigm. Identifying extremely old trees is therefore the groundwork not only for protecting and/or restoring entire landscapes, but also to revisit and update classic ecological theories that shape our understanding of environmental change.  more » « less
Award ID(s):
1903561
PAR ID:
10449785
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
231
Issue:
4
ISSN:
0028-646X
Format(s):
Medium: X Size: p. 1318-1337
Size(s):
p. 1318-1337
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Carbon (C) cycling processes are particularly dynamic following disturbance, with initial responses often indicative of longer-term change. In northern Michigan, USA, we initiated the Forest Resilience Threshold Experiment (FoRTE) to identify the processes that sustain or lead to the decline of C cycling rates across multiple levels (0, 45, 65 and 85% targeted gross leaf area index loss) of disturbance severity and, in response, to separate disturbance types preferentially targeting large or small diameter trees. Simulating the effects of boring insects, we stem girdled > 3600 trees below diameter at breast height (DBH), immediately and permanently disrupting the phloem. Weekly DBH measurements of girdled and otherwise healthy trees (n > 700) revealed small but significant increases in daily aboveground wood net primary production (ANPPw) in the 65 and 85% disturbance severity treatments that emerged six weeks after girdling. However, we observed minimal change in end-of-season leaf area index and no significant differences in annual ANPPw among disturbance severities or between disturbance types, suggesting continued C fixation by girdled trees sustained stand-scale wood production in the first growing season after disturbance. We hypothesized higher disturbance severities would favor the growth of early successional species but observed no significant difference between early and middle to late successional species’ contributions to ANPPw across the disturbance severity gradient. We conclude that ANPPw stability immediately following phloem disruption is dependent on the continued, but inevitably temporary, growth of phloem-disrupted trees. Our findings provide insight into the tree-to-ecosystem mechanisms supporting stand-scale wood production stability in the first growing season following a phloem-disrupting disturbance. 
    more » « less
  2. Abstract Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees in a primary, neotropical forest. We classified trees along two life history axes: afast–slowaxis characterized by a growth–survival trade‐off, and astature–recruitmentaxis with tall,long‐lived pioneersat one end and short,short‐lived recruitersat the other.Relative abundance, richness, productivity and light interception follow an approximate power law, systematically shifting over an order of magnitude with tree size.Slowsaplings dominate the understorey, butslowtrees decline to parity with rapidly growingfastandlong‐lived pioneerspecies in the canopy.Like the community as a whole,slowspecies are the closest to obeying the energy equivalence rule (EER)—with equal productivity per size class—but other life histories strongly increase productivity with tree size. Productivity is fuelled by resources, and the scaling of light interception corresponds to the scaling of productivity across life history strategies, withslowandallspecies near solar energy equivalence. This points towards a resource‐use corollary to the EER: the resource equivalence rule.Fitness trade‐offs associated with tree size and life history may promote coexistence in tropical forests by limiting niche overlap and reducing fitness differences.Synthesis. Tree life history strategies describe the different ways trees grow, survive and recruit in the understorey. We show that the proportion of trees with a pioneer life history strategy increases steadily with tree size, as pioneers become relatively more abundant, productive, diverse and capture more resources towards the canopy. Fitness trade‐offs associated with size and life history strategy offer a mechanism for coexistence in tropical forests. 
    more » « less
  3. ABSTRACT Freshwater mussels (Bivalvia: Unionida) are among the most imperilled freshwater taxa. Yet, there is a lack of basic life history information for mussels, including data on their growth and longevity. These data help inform conservation efforts, as they can indicate whether species or populations may be vulnerable to decline and inform which species may be best adapted to certain habitats. We aimed to quantify growth and longevity in five mussel species from four river systems in the southeastern United States and test whether growth was related to stream flow. We also interpreted our findings in the context of life history theory.To model mussel growth and longevity, we cut radial thick sections from the shells of mussels and used high‐resolution photography to image the shells. We identified annual growth rings (annuli) and used von Bertalanffy growth models to estimate growth rate (K) and maximum age (Amax) across 13 mussel populations. We then used biochronological methods to remove age‐related variation in annual growth in each shell. We tested whether annual growth was correlated with stream flow using discharge‐based statistics.We found substantial variation inKandAmaxamong species and among populations of the same species.Kwas negatively related toAmax. We did not find consistent correlations between annual growth and stream flow.Our estimates ofKandAmaxalign with previous studies on closely related species and populations. They also match the eco‐evolutionary prediction that growth rate and longevity are negatively related. Life history theory predicts that short‐lived species with higher growth rates should be better adapted to environments with cyclical disturbance regimes, whereas longer‐lived species with low growth rates should be better adapted to stable environments. The lack of correlation between annual growth and stream flow suggests that mussel growth may be limited by other factors in our study system.While some species seem to have relatively narrow ranges for growth and longevity, other species show wide variation among populations. This highlights the need for species‐ and population‐specific conservation efforts. Fundamental life history information can be integrated with other species traits to predict how freshwater taxa may respond to ecological threats. 
    more » « less
  4. Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world’s forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes. 
    more » « less
  5. Lianas are major contributors to tropical forest dynamics, yet we know little about their mortality. Using overlapping censuses of the lianas and trees across a 50 ha stand of moist tropical forest, we contrasted community-wide patterns of liana mortality with relatively well-studied patterns of tree mortality to quantify patterns of liana death and identify contributing factors. Liana mortality rates were 172% higher than tree mortality rates, but species-level mortality rates of lianas were similar to trees with ‘fast’ life-history strategies and both growth forms exhibited similar spatial and size-dependent patterns. The mortality rates of liana saplings (<2.1 cm in diameter), which represent about 50% of liana individuals, decreased with increasing disturbance severity and remained consistently low during post-disturbance stand thinning. In contrast, larger liana individuals and trees of all sizes had elevated mortality rates in response to disturbance and their mortality rates decreased over time since disturbance. Within undisturbed forest patches, liana mortality rates increased with increasing soil fertility in a manner similar to trees. The distinct responses of liana saplings to disturbance appeared to distinguish liana mortality from that of trees, whereas similarities in their patterns of death suggest that there are common drivers of woody plant mortality. 
    more » « less