skip to main content

Title: Interannual variation in rainfall modulates temperature sensitivity of carbon allocation and flux in a tropical montane wet forest

Tropical forests exert a disproportionately large influence on terrestrial carbon (C) balance but projecting the effects of climate change on C cycling in tropical forests remains uncertain. Reducing this uncertainty requires improved quantification of the independent and interactive effects of variable and changing temperature and precipitation regimes on C inputs to, cycling within and loss from tropical forests. Here, we quantified aboveground litterfall and soil‐surface CO2efflux (“soil respiration”;FS) in nine plots organized across a highly constrained 5.2°C mean annual temperature (MAT) gradient in tropical montane wet forest. We used five consecutive years of these measurements, during which annual rainfall (AR) steadily increased, in order to: (a) estimate total belowground C flux (TBCF); (b) examine how interannual variation in AR alters the apparent temperature dependency (Q10) of above‐ and belowground C fluxes; and (c) quantify stand‐level C allocation responses to MAT and AR. Averaged across all years,FS, litterfall, and TBCF increased positively and linearly with MAT, which accounted for 49, 47, and 46% of flux rate variation, respectively. Rising AR lowered TBCF andFS, but increased litterfall, with patterns representing interacting responses to declining light. The Q10ofFS, litterfall, and TBCF all decreased with increasing AR, with peak sensitivity to MAT in the driest year and lowest sensitivity in the wettest. These findings support the conclusion that for this tropical montane wet forest, variations in light, water, and nutrient availability interact to strongly influence productivity (litterfall+TBCF), the sensitivity of above‐ and belowground C fluxes to rising MAT (Q10ofFS, litterfall, and TBCF), and C allocation patterns (TBCF:[litterfall+TBCF]).

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Page Range / eLocation ID:
p. 3824-3836
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.

    more » « less
  2. Abstract

    Understanding how tropical tree phenology (i.e., the timing and amount of seed and leaf production) responds to climate is vital for predicting how climate change may alter ecological functioning of tropical forests. We examined the effects of temperature, rainfall, and photosynthetically active radiation (PAR) on seed phenology of four dominant species and community‐level leaf phenology in a montane wet forest on the island of Hawaiʻi using monthly data collected over ~ 6 years. We expected that species phenologies would be better explained by variation in temperature and PAR than rainfall because rainfall at this site is not limiting. The best‐fit model for all four species included temperature, rainfall, and PAR. For three species, including two foundational species of Hawaiian forests (Acacia koaandMetrosideros polymorpha), seed production declined with increasing maximum temperatures and increased with rainfall. Relationships with PAR were the most variable across all four species. Community‐level leaf litterfall decreased with minimum temperatures, increased with rainfall, and showed a peak at PAR of ~ 400 μmol/m2s−1. There was considerable variation in monthly seed and leaf production not explained by climatic factors, and there was some evidence for a mediating effect of daylength. Thus, the impact of future climate change on this forest will depend on how climate change interacts with other factors such as daylength, biotic, and/or evolutionary constraints. Our results nonetheless provide insight into how climate change may affect different species in unique ways with potential consequences for shifts in species distributions and community composition.

    more » « less
  3. Abstract

    Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from theUSAand Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°CMAT, but above 15°CMAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°CMATand were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southernUSAand western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of theUSAand Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.

    more » « less
  4. Abstract

    Accurate representation of temperature sensitivity (Q10) of soil microbial activity across time is critical for projecting soil CO2efflux. As microorganisms mediate soil carbon (C) loss via exo‐enzyme activity and respiration, we explore temperature sensitivities of microbial exo‐enzyme activity and respiratory CO2loss across time and assess mechanisms associated with these potential changes in microbial temperature responses. We collected soils along a latitudinal boreal forest transect with different temperature regimes (long‐term timescale) and exposed these soils to laboratory temperature manipulations at 5, 15, and 25°C for 84 days (short‐term timescale). We quantified temperature sensitivity of microbial activity per g soil and per g microbial biomass at days 9, 34, 55, and 84, and determined bacterial and fungal community structure before the incubation and at days 9 and 84. All biomass‐specific rates exhibited temperature sensitivities resistant to change across short‐ and long‐term timescales (meanQ10 = 2.77 ± 0.25, 2.63 ± 0.26, 1.78 ± 0.26, 2.27 ± 0.25, 3.28 ± 0.44, 2.89 ± 0.55 for β‐glucosidase,N‐acetyl‐β‐d‐glucosaminidase, leucine amino peptidase, acid phosphatase, cellobiohydrolase, and CO2efflux, respectively). In contrast, temperature sensitivity of soil mass‐specific rates exhibited either resilience (theQ10value changed and returned to the original value over time) or resistance to change. Regardless of the microbial flux responses, bacterial and fungal community structure was susceptible to change with temperature, significantly differing with short‐ and long‐term exposure to different temperature regimes. Our results highlight that temperature responses of microbial resource allocation to exo‐enzyme production and associated respiratory CO2loss per unit biomass can remain invariant across time, and thus, that vulnerability of soil organic C stocks to rising temperatures may persist in the long term. Furthermore, resistant temperature sensitivities of biomass‐specific rates in spite of different community structures imply decoupling of community constituents and the temperature responses of soil microbial activities.

    more » « less
  5. Abstract

    Identifying factors controlling forest productivity is critical to understanding forest‐climate change feedbacks, modelling vegetation dynamics and carbon finance schemes. However, little research has focused on productivity in regenerating tropical forests which are expanding in their fraction of global area have an order of magnitude larger carbon uptake rates relative to older forest.

    We examined above‐ground net primary productivity (ANPP) and its components (wood production and litterfall) over 10 years in forest plots that vary in successional age, soil characteristics and species composition using band dendrometers and litterfall traps in regenerating seasonally dry tropical forests in northwestern Costa Rica.

    We show that the components of ANPP are differentially driven by age and annual rainfall and that local soil variation is important. Total ANPP was explained by a combination of age, annual rainfall and soil variation. Wood production comprised 35% of ANPP on average across sites and years, and was explained by annual rainfall but not forest age. Conversely, litterfall increased with forest age and soil fertility yet was not affected by annual rainfall. In this region, edaphic variability is highly correlated with plant community composition. Thus, variation in ecosystem processes explained by soil may also be partially explained by species composition.

    These results suggest that future changes in annual rainfall can alter the secondary forest carbon sink, but this effect will be buffered by the litterfall flux which varies little among years. In determining the long‐term strength of the secondary forest carbon sink, both rainfall and forest age will be critical variables to track. We also conclude that detailed understanding of local site variation in soils and plant community may be required to accurately predict the impact of changing rainfall on forest carbon uptake.

    Synthesis. We show that in seasonally dry tropical forest, annual rainfall has a positive relationship with the growth of above‐ground woody tissues of trees and that droughts lead to significant reductions in above‐ground productivity. These results provide evidence for climate change—carbon cycle feedbacks in the seasonal tropics and highlight the value of longitudinal data on forest regeneration.

    more » « less