Click chemistry reactions have become an important tool for synthesizing user-defined hydrogels consisting of poly(ethylene glycol) (PEG) and bioactive peptides for tissue engineering. However, because click crosslinking proceeds via a step-growth mechanism, multi-arm telechelic precursors are required, which has some disadvantages. Here, we report for the first time that this requirement can be circumvented to create PEG–peptide hydrogels solely from linear precursors through the use of two orthogonal click reactions, the thiol–maleimide Michael addition and thiol–norbornene click reaction. The rapid kinetics of both click reactions allowed for quick formation of norbornene-functionalized PEG–peptide block copolymers via Michael addition, which were subsequently photocrosslinked into hydrogels with a dithiol linker. Characterization and in vitro testing demonstrated that the hydrogels have highly tunable physicochemical properties and excellent cytocompatibility. In addition, stoichiometric control over the crosslinking reaction can be leveraged to leave unreacted norbornene groups in the hydrogel for subsequent hydrogel functionalization via bioorthogonal inverse-electron demand Diels–Alder click reactions with s -tetrazines. After selectively capping norbornene groups in a user-defined region with cysteine, this feature was leveraged for protein patterning. Collectively, these results demonstrate that our novel chemical strategy is a simple and versatile approach to the development of hydrogels for tissue engineering that could be useful for a variety of applications.
more »
« less
The effects of processing variables on electrospun poly(ethylene glycol) fibrous hydrogels formed from the thiol‐norbornene click reaction
Abstract Electrospinning has been used to create scaffolds with tunable micro/nano architecture, stiffness, and porosity to mimic native extracellular matrix. This study investigated the effects of electrospinning parameters and hydrogel formulation (solvent and crosslinker type) on the architecture and properties of fibrous poly(ethylene glycol) (PEG) hydrogels formed from a photoclick thiol‐norbornene reaction. Fibrous hydrogels were prepared using hydrogel precursors (four‐arm PEG norbornene and multi‐thiol crosslinker), sacrificial poly(ethylene oxide) (PEO, 400 kDa), and photoinitiator (I2959) in either 2,2‐triflouroethanol (TFE) or water. Three thiol crosslinkers‐ 2,2′‐(ethylenedioxy)diethanethiol (EDT), pentaerythritol tetrakis(3mercaptopropionate) (PTMP), and PEG dithiol (PEGDT)‐ were investigated. Fibrous PEG networks with uniform fibers were produced at applied voltages of 10 or 12 kV for TFE and 16 kV for water. Fiber diameters of electrospun hydrogels were largely affected by the solvent when combined with PEO concentration and ranged from 0.5 to 3.5 mm in dry state. While the effect of crosslinker type on fiber diameter, morphology, and porosity of the fibrous hydrogel was minimal, it did modulate its shear modulus. To this end, this study provides the groundwork for selecting processing parameters to achieve desired properties of fibrous PEG thiol‐norbornene hydrogels for intended tissue engineering applications ranging from neural, cardiovascular to musculoskeletal.
more »
« less
- Award ID(s):
- 1825692
- PAR ID:
- 10449891
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Applied Polymer Science
- Volume:
- 138
- Issue:
- 32
- ISSN:
- 0021-8995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Formation of alginate‐based interpenetrating networks and addition of nanoparticles into these gels are widely used strategies to enhance the mechanical properties of alginate gels used for delivery and biomedical applications. Our previous work demonstrated that alginate‐clay nanocomposite hydrogels containing poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (PEO–PPO–PEO) copolymers exhibited significant enhancement of elasticity and temperature‐dependent rheology. However, the behavior of PEO–PPO–PEO copolymers within an alginate network remains unclear. In this study, we use small‐angle neutron scattering (SANS) to investigate the interactions between the alginate network and PEO–PPO–PEO triblock chains. Our fitting results revealed that the triblock chains can form micelles integrated into the alginate gel “egg box” structure at higher temperatures. The presence of the alginate network influences the formation of PEO–PPO–PEO micelles in our gels, leading to elongated ellipsoidal micelles rather than spherical micelles. Interestingly, as the temperature increased, these micelles did not expand in all three dimensions, as observed for pure PEO–PPO–PEO solutions. Rather, the total size increased only in one direction while remaining the same in the other two directions, suggesting that the alginate networks restrict the growth of micelles. Furthermore, we did not observe the distinct higher‐order peaks that are typical of cubic PEO–PPO–PEO hydrogels; rather, relatively weak secondary peaks were observed. These results demonstrate that the presence of the alginate network significantly influences micelle formation and assembly in composite hydrogel systems.more » « less
-
Abstract Recent investigations have pointed to physical entanglements that greatly outnumber chemical crosslinks as key sources of energy dissipation and low friction in hydrogel networks. Slide-ring gels are an emerging class of hydrogels described by their mobile crosslinks, which are formed by rings topologically constrained to slide along linear polymer chains within the network. These materials have enjoyed decades of study by polymer chemists but have been underexplored by the tribology community. In this work, we synthesized a pseudo-rotaxane crosslinker from poly(ethylene glycol) diacrylate (PEG-diacrylate) andα-cyclodextrin-acrylate followed by hydrogel networks by connecting the sliding crosslinks with polyacrylamide chains. The mechanical and tribological properties of slide-ring hydrogels were investigated using a custom-built microtribometer. Slide-ring hydrogels exhibit unique behavior compared to conventional covalently crosslinked polyacrylamide hydrogels and offer a vast design space for future investigations. Graphical Abstractmore » « less
-
Abstract Block polyethers comprised of poly(propylene oxide) (PPO) and poly(ethylene oxide) (PEG or PEO) segments form the basis of ABA‐type PEO‐b‐PPO‐b‐PEO poloxamer materials. The inverse architecture with an internal hydrophilic PEO segment flanked by hydrophobic blocks can be difficult to prepare with control of architecture by use of traditional anionic polymerization. These oxyanionic polymerizations are plagued by chain‐transfer‐to‐monomer side reactions that occur with substituted epoxides such as propylene oxide (PO). Herein, we report a new method for the preparation of block polymers through a controlled polymerization involving a N‐Al Lewis adduct catalyst and an aluminum alkoxide macroinitiator. The Lewis pair catalyst was able to chain‐extend commercial PEO macroinitiators to prepare di‐, tri‐, and pentablock polyethers with low dispersity and reasonable monomer tolerance. Chain extension was confirmed using size exclusion chromatography and diffusion ordered nuclear magnetic resonance spectroscopy. The resulting block polymers were additionally analyzed with small‐angle X‐ray scattering to correlate the morphology to molecular architecture.more » « less
-
Electrospinning is a versatile approach to generate nanofibers in situ. Yet, recently, wet electrospinning has been introduced as a more efficient way to deposit isolated fibers inside bulk materials. In wet electrospinning, a liquid bath is adopted, instead of a solid collector, for fiber collection. However, despite several studies focused on wet electrospinning to yield polymer composites, few studies have investigated wet electrospinning to yield ceramic composites. In this paper, we propose a novel in-situ fabrication approach for nanofiber-reinforced ceramic composites based on an enhanced wet-electrospinning method. Our method uses electrospinning to draw polymer nanofibers directly into a reactive pre-ceramic gel, which is later activated to yield advanced nanofiber-reinforced ceramic composites. We demonstrate our method by investigating wet electrospun Polyacrylonitrile and Poly(ethylene oxide) fiber-reinforced geopolymer composites, with fiber weight fractions in the range 0.1–1.0 wt%. Wet electrospinning preserves the amorphous structure of geopolymer while changing the molecular arrangement. Wet electrospinning leads to an increase in both the fraction of mesopores and the overall porosity of geopolymer composites. The indentation modulus is in the range 6.76–8.90 GPa and the fracture toughness is in the range 0.49–0.76 MPam with a clear stiffening and toughening effect observed for Poly(ethylene oxide)-reinforced geopolymer composites. This work demonstrates the viability of wet electrospinning to fabricate multifunctional nanofiber-reinforced composites.more » « less
An official website of the United States government
