skip to main content


Title: The effects of processing variables on electrospun poly(ethylene glycol) fibrous hydrogels formed from the thiol‐norbornene click reaction
Abstract

Electrospinning has been used to create scaffolds with tunable micro/nano architecture, stiffness, and porosity to mimic native extracellular matrix. This study investigated the effects of electrospinning parameters and hydrogel formulation (solvent and crosslinker type) on the architecture and properties of fibrous poly(ethylene glycol) (PEG) hydrogels formed from a photoclick thiol‐norbornene reaction. Fibrous hydrogels were prepared using hydrogel precursors (four‐arm PEG norbornene and multi‐thiol crosslinker), sacrificial poly(ethylene oxide) (PEO, 400 kDa), and photoinitiator (I2959) in either 2,2‐triflouroethanol (TFE) or water. Three thiol crosslinkers‐ 2,2′‐(ethylenedioxy)diethanethiol (EDT), pentaerythritol tetrakis(3mercaptopropionate) (PTMP), and PEG dithiol (PEGDT)‐ were investigated. Fibrous PEG networks with uniform fibers were produced at applied voltages of 10 or 12 kV for TFE and 16 kV for water. Fiber diameters of electrospun hydrogels were largely affected by the solvent when combined with PEO concentration and ranged from 0.5 to 3.5 mm in dry state. While the effect of crosslinker type on fiber diameter, morphology, and porosity of the fibrous hydrogel was minimal, it did modulate its shear modulus. To this end, this study provides the groundwork for selecting processing parameters to achieve desired properties of fibrous PEG thiol‐norbornene hydrogels for intended tissue engineering applications ranging from neural, cardiovascular to musculoskeletal.

 
more » « less
Award ID(s):
1825692
NSF-PAR ID:
10449891
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
138
Issue:
32
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Click chemistry reactions have become an important tool for synthesizing user-defined hydrogels consisting of poly(ethylene glycol) (PEG) and bioactive peptides for tissue engineering. However, because click crosslinking proceeds via a step-growth mechanism, multi-arm telechelic precursors are required, which has some disadvantages. Here, we report for the first time that this requirement can be circumvented to create PEG–peptide hydrogels solely from linear precursors through the use of two orthogonal click reactions, the thiol–maleimide Michael addition and thiol–norbornene click reaction. The rapid kinetics of both click reactions allowed for quick formation of norbornene-functionalized PEG–peptide block copolymers via Michael addition, which were subsequently photocrosslinked into hydrogels with a dithiol linker. Characterization and in vitro testing demonstrated that the hydrogels have highly tunable physicochemical properties and excellent cytocompatibility. In addition, stoichiometric control over the crosslinking reaction can be leveraged to leave unreacted norbornene groups in the hydrogel for subsequent hydrogel functionalization via bioorthogonal inverse-electron demand Diels–Alder click reactions with s -tetrazines. After selectively capping norbornene groups in a user-defined region with cysteine, this feature was leveraged for protein patterning. Collectively, these results demonstrate that our novel chemical strategy is a simple and versatile approach to the development of hydrogels for tissue engineering that could be useful for a variety of applications. 
    more » « less
  2. Abstract

    Xeno‐free, chemically defined poly(ethylene glycol) (PEG)‐based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene‐click chemistries are integrated to form synthetic, dynamically tunable PEG–peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol–norbornene hydrogels crosslinked by multiarm PEG–norbornene (PEG–NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine–norbornene (Tz–NB) click reaction is then employed to dynamically stiffen the cell‐laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono‐functionalized PEG‐Tz, PEG‐mTz, and dualfunctionalized PEG‐Tz/mTz that react with PEG–NB to form additional crosslinks in the cell‐laden hydrogels. The versatility of Tz‐NB stiffening is demonstrated with different Tz‐modified macromers or by intermittent incubation of PEG‐Tz for temporal stiffening. Finally, the Tz–NB‐mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno‐free and dynamic stem cell niche.

     
    more » « less
  3. Abstract

    Thiol–norbornene (thiol–ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4‐arm ester‐linked PEG‐norbornene (PEG‐4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long‐term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG‐4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG‐4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG‐4aNB) mitigates this rapid in vivo degradation, and the PEG‐4aNB hydrogels maintain long‐term in vivo stability for months. Furthermore, when compared to PEG‐4eNB, the PEG‐4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG‐4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well‐established PEG‐4eNB hydrogels.

     
    more » « less
  4. Abstract

    The role of hydrogel properties in regulating the phenotype of triple negative metastatic breast cancer is investigated using four cell lines: the MDA‐MB‐231 parental line and three organotropic sublines BoM‐1833 (bone‐tropic), LM2‐4175 (lung‐tropic), and BrM2a‐831 (brain‐tropic). Each line is encapsulated and cultured for 15 days in three poly(ethylene glycol) (PEG)‐based hydrogel formulations composed of proteolytically degradable PEG, integrin‐ligating RGDS, and the non‐degradable crosslinker N‐vinyl pyrrolidone. Dormancy‐associated metrics including viable cell density, proliferation, metabolism, apoptosis, chemoresistance, phosphorylated‐ERK and ‐p38, and morphological characteristics are quantified. A multimetric classification approach is implemented to categorize each hydrogel‐induced phenotype as: 1) growth, 2) balanced tumor dormancy, 3) balanced cellular dormancy, or 4) restricted survival, cellular dormancy. Hydrogels with high adhesivity and degradability promote growth. Hydrogels with no adhesivity, but high degradability, induce restricted survival, cellular dormancy in the parental line and balanced cellular dormancy in the organotropic lines. Hydrogels with reduced adhesivity and degradability induce balanced cellular dormancy in the parental and lung‐tropic lines and balanced tumor mass dormancy in bone‐ and brain‐tropic lines. The ability to induce escape from dormancy via dynamic incorporation of RGDS is also presented. These results demonstrate that ECM properties and organ‐tropism synergistically regulate cancer cell phenotype and dormancy.

     
    more » « less
  5. Abstract

    Engineered composite scaffolds composed of natural and synthetic polymers exhibit cooperation at the molecular level that closely mimics tissue extracellular matrix's (ECM) physical and chemical characteristics. However, due to the lack of smooth intermix capability of natural and synthetic materials in the solution phase, bio‐inspired composite material development has been quite challenged. In this research, we introduced new bio‐inspired material blending techniques to fabricate nanofibrous composite scaffolds of chitin nanofibrils (CNF), a natural hydrophilic biomaterial and poly (ɛ‐caprolactone) (PCL), a synthetic hydrophobic‐biopolymer. CNF was first prepared by acid hydrolysis technique and dispersed in trifluoroethanol (TFE); and second, PCL was dissolved in TFE and mixed with the chitin solution in different ratios. Electrospinning and spin‐coating technology were used to form nanofibrous mesh and films, respectively. Physicochemical properties, such as mechanical strength, and cellular compatibility, and structural parameters, such as morphology, and crystallinity, were determined. Toward the potential use of this composite materials as a support membrane in blood–brain barrier application (BBB), human umbilical vein endothelial cells (HUVECs) were cultured, and transendothelial electrical resistance (TEER) was measured. Experimental results of the composite materials with PCL/CNF ratios from 100/00 to 25/75 showed good uniformity in fiber morphology and suitable mechanical properties. They retained the excellent ECM‐like properties that mimic synthetic‐bio‐interface that has potential application in biomedical fields, particularly tissue engineering and BBB applications.

     
    more » « less