skip to main content


Title: The phylogeographic history of a range disjunction in eastern North America: the role of post‐glacial expansion into newly suitable habitat
PREMISE

A disjunct distribution, where a species’ geographic range is discontinuous, can occur through vicariance or long‐distance dispersal. Approximately 75 North American plant species exhibit a ~650 km disjunction between the Ozark and Appalachian regions. This disjunction is attributed to biogeographic forces including: (1) Eocene–Oligocene vicariance by the formation of the Mississippi embayment; (2) Pleistocene vicariance from interglacial flooding; (3) post‐Pleistocene northward colonization from separate glacial refugia; (4) Hypsithermal vicariance due to climate fluctuations; and (5) recent long‐distance dispersal. We investigated which of these pathways most likely gave rise to the Appalachian‐Ozark disjunction inDelphinium exaltatum.

METHODS

We genotyped populations ofD. exaltatumfrom five Ozark and seven Appalachian localities, analyzed genetic structure, tested the order and timing of divergences usingDIYABC, and conducted niche reconstructions up to 21,000 years before present (YBP).

RESULTS

Populations fell into five main genetic clusters, i.e., a group in the central Appalachians, and four “lowland” groups. DIYABC analyses showed the central Appalachian and lowland lineages diverging 11,300 to17,000 YBP, and the lowland groups diverging 6800 to 10,900 YBP. Niche reconstructions showed that suitable climate for the central Appalachian lineage experienced large spatial discontinuity starting 14,000 YBP, such that divergence and persistence before this period is less plausible than divergence thereafter.

CONCLUSIONS

Our results did not fully support any of the original hypotheses. Rather, the oldest divergence likely occurred after 13,500 YBP through expansion into newly opened habitat in the Appalachians. The Appalachian‐Ozark disjunction likely resulted from northward dispersal of the lowland lineage as climate warmed during the Holocene.

 
more » « less
NSF-PAR ID:
10449937
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Volume:
108
Issue:
6
ISSN:
0002-9122
Page Range / eLocation ID:
p. 1042-1057
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We explore the biogeographic history of the Gondwanan lineage Triaenonychidae, a dispersal‐limited arachnid taxon that underwent a recent taxonomic revision based on phylogenomic data. We explicitly test hypotheses related to a biogeographical pattern of ‘common vicariance, rare dispersal’, predicted for dispersal‐limited taxa.

    Location

    Continental landmasses of former temperate Gondwanan terranes (southern South America, southern Africa, Madagascar, Australia, New Zealand, and New Caledonia).

    Taxon

    Triaenonychidae, Opiliones, Arachnida.

    Methods

    Utilizing a recently published phylogenomic data set based on ultra‐conserved elements, we conduct Bayesian divergence dating analyses, ancestral area estimation in a likelihood model testing framework, and analyses of macroevolutionary dynamics. Results are correlated with geological history and palaeoclimate reconstructions to infer biogeographic history and distribution.

    Results

    We find that divergence dates of ancestral Triaenonychidae pre‐date continental breakup of Gondwana and could be attributed to palaeoclimatic differentiation across Gondwana. There is evidence for two separate expansion routes that span eastern and western Gondwana corresponding to northern warmer climate and southern cooler climate lineages. Many divergences across intercontinental lineages coincide with the timing of continental fragmentation, supporting vicariance as a dominant force. However, some lineages are supported as obvious examples of rare long‐distance dispersal. Biogeographic results support the predicted pattern of common vicariance and rare dispersal for these dispersal‐limited organisms.

    Main conclusions

    Vicariance due to continental fragmentation was important in the early diversification of Triaenonychidae. Their unique combination and degrees of dispersal ability and microhabitat preference resulted in complex phylogenetic patterns of geographic distribution not typically seen in other animal taxa. Examining biogeographic patterns across recent studies of arachnid taxa with varying dispersal ability, it is clear that biological characteristics play an important role in the relative importance of dispersal and vicariance (dispersal–vicariance continuum) for any given taxon and can be useful in forming testable a priori hypotheses.

     
    more » « less
  2. Abstract Aim

    To investigate how putative barriers, forest refugia, and ecological gradients across the lower Guineo‐Congolian rain forest shape genetic and phenotypic divergence in the leaf‐folding frogAfrixalus paradorsalis, and examine the role of adjacent land bridge and sky‐islands in diversification.

    Location

    The Lower Guineo‐Congolian Forest, the Cameroonian Volcanic Line (CVL), and Bioko Island, Central Africa.

    Taxon

    Afrixalus paradorsalis(Family: Hyperoliidae), an African leaf‐folding frog.

    Methods

    We used molecular and phenotypic data to investigate diversity and divergence among theA. paradorsalisspecies complex distributed across lowland rain forests, a land bridge island, and mountains in Central Africa. We examined the coincidence of population boundaries, landscape features, divergence times, and spatial patterns of connectivity and diversity, and subsequently performed demographic modelling using genome‐wide SNP variation to distinguish among divergence mechanisms in mainland (riverine barriers, forest refugia, ecological gradients) and land bridge island populations (vicariance, overwater dispersal).

    Results

    We detected four genetically distinct allopatric populations corresponding to Bioko Island, the CVL, and two lowland rain forest populations split by the Sanaga River. Although lowland populations are phenotypically indistinguishable, pronounced body size evolution occurs at high elevation, and the timing of the formation of the high elevation population coincides with mountain uplift in the CVL. Spatial analyses and demographic modelling revealed population divergence across mainland Lower Guinea is best explained by forest refugia rather than riverine barriers or ecological gradients, and that the Bioko Island population divergence is best explained by vicariance (marine incursion) rather than overseas dispersal.

    Main conclusions

    We provide growing support for the important role of forest refugia in driving intraspecific divergences in the Guineo‐Congolian rain forest. InA. paradorsalis, sky‐islands in the CVL have resulted in greater genetic and phenotypic divergences than marine incursions of the land bridge Bioko Island, highlighting important differences in patterns of island‐driven diversification in Lower Guinea.

     
    more » « less
  3. Abstract Aim

    We explored the extent to which Gondwanan vicariance contributed to the circum‐Antarctic distribution of the mite harvestman family Pettalidae, a group of small, dispersal‐limited arachnids whose phylogeny has been poorly resolved, precluding rigorous biogeographic hypothesis testing.

    Location

    Continental landmasses of former temperate Gondwana (Chile, South Africa, Sri Lanka, Australia and New Zealand).

    Taxon

    Pettalidae, Opiliones.

    Methods

    We generated transcriptomes for a phylogeny of 16 pettalids, spanning 9 genera. Data were analysed using maximum likelihood, Bayesian inference and coalescence methods. The phylogenetic position of the Sri Lankan genusPettaluswas further explored using quartet likelihood mapping and changes in gene likelihood scores. We also estimated divergence times and looked for signatures of extinction across Antarctica and central Australia using previously published phylogenies with near‐complete species sampling constrained to match our transcriptomic results. Finally, we estimated ancestral ranges and inferred instances of vicariance.

    Results

    We recovered a well‐supported topology with a division between taxa from landmasses that made up East Gondwana, and a grade of taxa from West Gondwana.Pettaluswas resolved either as the sister group of the Queensland‐endemicAustropurcellia, or as the sister group to a larger clade from East Gondwana, though favouringPettalus + Austropurcellia. Divergence times for multiple vicariance events coincided with Gondwana's breakup. Speciation–extinction analysis found one diversification process for the family: an initial burst of cladogenesis that slowed down through time.

    Main Conclusions

    Given that the order of cladogenesis corresponds to the order in which Gondwana fragmented, and the concurrent timing of vicariance and rifting, Gondwanan breakup explains major biogeographic patterns in Pettalidae. Some divergences predate initial rifting, but there is no evidence oftrans‐oceanic dispersal. The Sri Lanka–eastern Australia relationship makes sense in the light of large‐scale extinction across Antarctica and central Australia; however, we find no clear signatures of mass extinction.

     
    more » « less
  4. Abstract Aim

    As a continental island, much of the biota of New Zealand was initially thought to have been shaped by vicariance. Recent studies, however, have highlighted the role of dispersal, with some even suggesting that the entire biota is the product of dispersal events following emergence of the islands. This study focuses on the interplay between dispersal and vicariance, specifically asking whether the spider family Orsolobidae has Gondwanan origins on New Zealand.

    Location

    The spider family Orsolobidae was sampled from all continents where they occur (Africa, Australia, New Zealand and South America), comprising a total of 66 specimens representing the phylogenetic diversity of the family.

    Methods

    DNAsequences were obtained from six fragments that were subsequently aligned and analysed withMrBayes3.2 andbeast1.8. The phylogeny was calibrated with fossils used as node calibrations, as well as with the substitution rate of Histone H3.

    Results

    The orsolobid fauna of each land mass except Australia forms a monophyletic group in our analyses. The divergence dating analysis suggests that diversification of Orsolobidae started at a minimum of 80 Ma, while the New Zealand clade dates from a minimum of 40 Ma.

    Main conclusions

    Thus, while many taxa have colonized the islands by dispersal, certain lineages, including the Orsolobidae, have clearly been capable of persisting through times of reduced land area.

     
    more » « less
  5. Abstract Aim

    Periodic lowering of sea levels and formation of land bridges can reshape phylogeographic patterns of insular biotas. Using archipelago‐wide sampling, we aimed to test if phylogeography of an old‐endemic bat lineage reflected Pleistocene land bridges.

    Location

    Solomon Islands and Papua New Guinea.

    Taxon

    MelonycterisandNesonycterisbats (Pteropodidae).

    Methods

    We sequenced genome‐wide RADseq data for 49 specimens from 15 islands. We assessed phylogenetic relationships using maximum likelihood inRAxMLand quartet‐based methods inSVDquartets, population structure usingStructure, and admixture using maximum likelihood methods inTreeMix. We tested for genetic and geographic distance correlations using distance‐based redundancy analyses (dbRDA), identifying best‐fit models using stepwise model selection.

    Results

    Phylogenetic analyses identified fiveNesonycterisclades corresponding to Greater Bukida, Guadalcanal, Makira, Malaita and New Georgia group. Makira samples were sister to remainingNesonycteris.Structureidentified four populations: New IrelandMelonycteris melanops; andNesonycterisfrom Greater Bukida (including Guadalcanal); Malaita and Makira; and New Georgia group. Genetic backgrounds of Mono, Ngella and Guadalcanal separated from remaining Greater Bukida islands. Makira and Malaita separated into two populations. New Georgia group lacked structure, and genetic and geographic distances were not correlated. The best‐fit geographic distance models forNesonycterisand a Greater Bukida subset were least shore‐to‐shore distance; and Euclidean and least‐cost distances respectively.

    Main Conclusions

    Influences of modern and Pleistocene island isolation and connectivity were evident in the overall Phylogeography ofNesonycteris. The lack of structure or geographic distance correlations within the New Georgia group indicated all islands were interconnected during the Last Glacial Maximum or contemporary oceanic divides are ineffective barriers. Conversely, genetic divergence across Greater Bukida islands reflected land‐bridge constrained dispersal. A Makira clade sister to allNesonycterispossibly indicates an origin on Makira. Alternately it reflects Makira's long‐isolated geographic status, as similar results exist for a range of taxa.

     
    more » « less